

E-book Series

Developer’s Guide to

Getting Started with

Azure Cosmos DB

Azure Cosmos DB,

the globally

distributed

database service

from Microsoft

Who should read this?

This eBook was written for developers who

are thinking of building new cloud apps or

moving existing NoSQL apps to the cloud. It

provides a brief primer on NoSQL, followed

by an overview of Azure Cosmos DB and the

value it brings to developers building apps

for NoSQL workloads. We also provide an

introduction to the core concepts you’ll need

to understand how best to put Azure Cosmos

DB to use, followed by some resources to

help you get started.

Why Azure Cosmos DB?

Azure Cosmos DB, the globally distributed

database service from Microsoft, is unique in

many ways. It is ideal for distributed apps

that require extremely low latency at a global

scale and enables you to avoid the all-or-

nothing tradeoffs you face with most other

NoSQL (nonrelational) databases by

providing:

• native support for all major NoSQL data

models—including key-value, document,

graph, and columnar

• turnkey global distribution,

• multi-master support,

• elastic scaling of throughput and storage

• five well-defined consistency levels,

• data indexing as data is ingested, without

requiring you to deal with schema or

index management

it does all this with guaranteed high

availability and low latency, all backed by

industry-leading SLAs.

Contents

NoSQL: A quick primer 1

NoSQL defined .. 1

When to consider NoSQL.................................... 2

How to choose a NoSQL database 2

Azure Cosmos DB: A globally distributed,

multi-model database 5

Key features and capabilities 6

Common use cases .. 8

Core concepts and considerations 10

Azure Cosmos DB accounts 10

Resource model: Databases, containers, and

items.. 11

Partitioning and horizontal scalability 12

Choosing a good partition key 13

Request units and provisioned throughout

 ... 14

Global distribution .. 18

Consistency .. 21

Automatic indexing... 24

Architectural considerations 27

Change feed... 27

Building serverless apps with Azure Cosmos

DB and Azure Functions.................................... 28

Server-side programming 29

Apache Spark to Azure Cosmos DB

Connector ... 30

Built-in operational analytics with Apache

Spark (in preview) .. 30

Operational considerations 31

Cost optimization with Azure Cosmos DB 31

Security .. 31

Online backup and restore 31

Compliance .. 32

Building an app with Azure Cosmos DB 33

Choosing the right API 33

One database, multiple APIs 33

Choosing an API ... 34

Getting Started with the SQL API 35

Quickstarts .. 35

Tutorials ... 35

How-to guides .. 36

Additional resources... 36

Getting Started with the Cassandra API 37

Quickstarts .. 37

Tutorials ... 37

Cassandra and Spark .. 38

How-to guides .. 38

Getting Started with the Azure Cosmos DB for

MongoDB API ... 39

Quickstarts .. 39

Tutorials ... 40

How-to guides .. 40

Getting Started with the Gremlin API 42

Quickstarts .. 42

Tutorials ... 43

How-to guides .. 43

Getting Started with the Table API 44

Quickstarts .. 44

Tutorials ... 44

How-to guides .. 45

Conclusion ... 46

© 2019 Microsoft Corporation. All rights reserved. This document is provided “as is.” Information and views expressed in this document,

including URL and other internet website references, may change without notice. You bear the risk of using it. This document does not

provide you with any legal rights to any intellectual property in any Microsoft product. You may copy and use this document for your

internal, reference purposes.

1

NoSQL: A quick

primer

If you work with databases, you’ve probably

heard of NoSQL. Even if you haven’t, odds are

that you depend on NoSQL databases more

than you know—if not as a developer, as an

end user. It’s becoming more and more

popular with today’s largest companies for its

flexibility and scalability, in areas ranging from

gaming and e-commerce to big data and real-

time web apps. The use cases for NoSQL are

continuing to grow, and, with the availability

of NoSQL database services in the cloud, the

benefits that it provides are within the reach

of all.

NoSQL databases have been around since the

1960s, under various names. However, their

popularity began to surge—and the NoSQL

label was attached—much more recently, as

leading technology companies began

adopting NoSQL databases for their ability to

handle petabytes of rapidly changing,

unstructured data. But what exactly is a

NoSQL database and, more importantly, what

can it do for you as a developer?

NoSQL defined

NoSQL is the name for a category of

databases that are nonrelational in nature,

meaning that data storage and retrieval aren’t

handled using a predefined schema, with

structured rows and columns, as with a

relational database. Instead, NoSQL databases

don’t require a predefined schema and

employ data models that make them highly

effective at handling unstructured,

unpredictable data—often with blazing-fast

query speeds. By design, most NoSQL

databases also support horizontal scalability.

Common NoSQL data models

The most common types of NoSQL data

models include:

• Key-value type, which pairs keys and

values using a hash table—in a manner

similar to how a file path points to a file

containing some data. The key is used to

reference the value, which can include any

arbitrary value—for example, an integer,

string, a JSON structure (aka a document),

a JPEG, an array, and so on.

• Document databases extend the concept

of the key-value database by organizing

entire documents into groups often called

collections. A key can be any attribute

within the document, within which data is

encoded using a standardized format,

such as XML or JSON. (In general, key-

value stores don’t support nested key-

value pairs, whereas document databases

do. What’s more, because document

databases store their data in a format that

the database can understand, they allow

queries on any attribute within a

document.)

• Columnar, or wide-column databases,

which generally store the values of one or

more columns together in a storage block.

Unlike relational databases, a columnar

database can efficiently store and query

across rows that contain sparsely filled

columns.

• Graph, which uses a data model based on

nodes, edges, and properties to represent

interconnected data—such as

relationships between people in a social

network.

It’s worth noting that most NoSQL databases

can also handle highly structured data—they

just aren’t limited to it, nor do you need to

define a database schema ahead of time.

Similarly, if you want to add new data types to

a NoSQL database, unlike with a relational

database, you won’t need to stop what you’re

2

doing, add new columns, and then move your

data to the new schema. This can be a big

advantage when it comes to agile

development and more frequent software

release cycles.

Horizontal scalability

Another factor that contributes to the rapid

adoption of NoSQL databases is that they’re

designed to scale out, or scale horizontally,

which makes them capable of handling a

virtually unlimited amount of data. That’s not

to say that you can’t scale out a relational

database, but it can get tricky. Many NoSQL

databases, in comparison, have the inherent

capabilities that allow them to scale out

automatically and distribute their data over an

arbitrary number of servers.

Replication

Most NoSQL databases are distributed and

support some form of automatic replication,

which can help maintain service availability in

the event of a planned or unplanned outage.

Replication also lets you distribute copies of

your data across multiple geographies. For

geographically distributed apps, it implies that

someone using an app in one part of the

world can read from a local replica and rather

than waiting for data to be retrieved from the

other side of the globe.

When to consider NoSQL

At this point you might be asking, “So when

should I use a NoSQL database?” To answer

this, it’s worth starting with an

acknowledgment that “NoSQL” can also mean

“Not only SQL.” As we’ve stated, NoSQL

databases can also handle structured data—

and can often be accessed using a structured

query language like SQL. Although at first that

might seem to muddy the picture when it

comes to the SQL or NoSQL question, it really

doesn’t—it just shifts the focus to what your

app needs to do, and what’s required of your

database to support that.

If you need to handle unstructured data at

any scale, NoSQL might be a good place to

start. Now consider the other characteristics of

many NoSQL databases, such as low latency,

horizontal scalability, and automatic

replication. Clearly, these characteristics lend

themselves well to a distributed app that

requires fast performance across multiple

geographic regions—achieved by using the

enabling characteristics of NoSQL to put a

copy of your data in each geography where

your users reside. Similarly, the low latency of

NoSQL makes it a strong candidate for

delivering real-time customer experiences—

like you might need for e-commerce or

gaming. NoSQL is also proving popular in

other scenarios, such as building serverless

apps and implementing big data/analytics

over operational data/transactional apps.

The takeaway here is that, at the end of the

day, the decision on when to use NoSQL is

about more than just whether your data is

structured or not—it’s about what your app

needs to do, and how easily and flexibly you

can achieve that.

How to choose a NoSQL

database

Flexibility in handling unstructured data,

inherent horizontal scalability, and built-in

replication are all reasons why NoSQL

databases are becoming more and more

popular. And with so many of them to choose

from, developers can usually find one that’s

well suited to their data. Such specialized,

purpose-built NoSQL databases can also serve

queries with blazing speed in many cases,

which is critical in delivering real-time user

experiences at scale—gaming and e-

commerce are two good examples. However,

that’s not to say that there aren’t some

potential tradeoffs and other important

3

considerations associated with choosing a

NoSQL database.

Programming models and APIs

If you’ve worked with relational databases,

you’re probably aware that they’re not always

a good match for the data structures you use

when programming. Many NoSQL databases,

however, are aggregate oriented, with an

aggregate defined as a collection of data that

you interact with as a unit—making them a

much more natural fit for modern object-

oriented programming languages.

As such, when it comes to choosing a NoSQL

database, you’ll probably want to start by

choosing a data model—and then evaluate

the NoSQL databases that support it, along

with the programming languages and SDKs

that each database supports. Does the

database lock you into a given SDK and

language, or will you have a choice in the

matter? And does the SDK have what you

need to get the most out of your distributed

database—such as transparent multihoming

APIs to ensure that your app can properly

operate in case of a planned or unplanned

failover?

Consistency vs. latency

Because a replicated NoSQL database is, in

effect, a distributed system, you’ll need to be

aware of the CAP theorem. Also called

Brewer’s theorem, it states that it’s impossible

for a distributed data store to simultaneously

provide more than two out of the following

three guarantees:

• Consistency—Ensuring that every request

receives the most recent data

• Availability—Ensuring that every request

receives a response

• Partition tolerance—Ensuring that the

system continues to operate in the event

of a failure between network nodes

The impossibility result of the CAP theorem

proves that it’s impossible for such a system

to both remain highly available and deliver

linearizable consistency in the event of a

network failure (in which replicas are unable

to talk to each other). Similarly, the CAP

theorem shows that, in the absence of a

network failure, you can achieve both

availability and consistency. However, even in

the absence of a network failure, you still need

to consider tradeoffs between consistency and

latency—formally codified in PACELC

theorem—due to the fact that data packets

being sent over a network wire are unable to

travel faster than the speed of light.

Some NoSQL databases don’t guarantee

consistency. Most of them, however, let you

choose from either end of the spectrum:

strong consistency (you’ll get the latest data,

but you might need to wait) or eventual

consistency (you’ll get a fast response, but the

data might be stale). Some NoSQL databases

support other consistency levels, which

typically fall in between those extremes. The

key takeaway here is that, all other things

considered equal, the more flexibility and

control you have in terms of consistency

levels—and thus the tradeoffs between

consistency and latency—the better off you’ll

be.

On-premises vs. cloud—and which

cloud?

NoSQL databases have been around for years,

so you can find many that were designed to

run on-premises. However, it’s worth noting

that NoSQL databases really started becoming

popular with the advent of the cloud—and for

good reason: their distributed nature and

horizontal scalability make them an ideal fit. In

fact, odds are that, regardless of the data

model you choose, you’ll find several cloud

options. But as you’re probably aware, all

clouds are not created equal. So how do you

choose?

https://people.eecs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf
http://www.glassbeam.com/sites/all/themes/glassbeam/images/blog/10.1.1.67.6951.pdf
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf
http://cs-www.cs.yale.edu/homes/dna/papers/abadi-pacelc.pdf

4

In approaching this decision, in addition to

programming languages/APIs and

consistency/latency tradeoffs, you might want

to consider the following:

• Supported data models. Does the cloud

provider support all the data models that I

might want to use? And if so, will I need to

juggle a bunch of different database

services?

• Deployment and operations. How easily

can I deploy my database, and then

replicate it to other regions if needed?

How tedious are the setup and

maintenance requirements? Do I get a

fully managed service, or will I need to

worry about patching and planned

downtime?

• Geographic presence. Where are the

cloud provider’s datacenters? Can put my

data where I want it? How will I handle

important regulatory and data sovereignty

issues, such as the European Union’s new

General Data Protection Regulation?

• Ease of replication. What’s the process

for replicating my database to a different

geographic region? How complex is the

process, and how long will it take?

• Scalability. How will I ensure the

database resources required to ensure

adequate performance—and scale for

growth? Will I need to pre-provision and

pay for resources that I might never use,

or can I scale up and down on demand to

handle unpredictable workloads?

• High availability. What will happen in the

event of an unexpected failure? Is high

availability built into the service, or will it

be an added complication that I’ll need to

worry about?

• Service levels. Does the cloud service

guarantee a certain level of availability?

Does it have any latency guarantees? And

if so, are they “empty promises” or are

they financially backed?

• Ecosystem. How tightly integrated is the

database with the rest of the cloud

platform? Does it provide all the services I

need, and can they be quickly stitched

together to build a complete solution?

Finally, in selecting a NoSQL database service,

it’s worth taking a step back and examining its

cloud platform as a whole. Rarely does any

database exist in isolation, so you’ll want to

make sure the service you choose—and the

platform upon which it resides—can provide

everything that you’ll need to put your NoSQL

database to use. The specific services you’ll

need will depend on your app, such as the

ability to integrate your NoSQL database with

other app components via serverless

functions. Other cloud services that you might

need are more scenario specific, such as those

for ingesting massive volumes of IoT data,

implementing real-time streaming analytics,

or building AI into your apps. And don’t forget

about ease of integration, such as triggering a

serverless function when your NoSQL data

changes. After all, even if a cloud platform

provides all the services you need, you don’t

want to tie them together with paper clips and

glue.

5

Azure Cosmos DB: A

globally distributed,

multi-model

database

Azure Cosmos DB, the globally distributed

database service from Microsoft, is a lot more

than just another NoSQL database. it provides

native support for all major NoSQL data

models - key-value type, document, graph,

and columnar—exposed through multiple

APIs so you can use familiar tools and

frameworks. Azure Cosmos DB also delivers

turnkey global distribution, multi-master

support, and elastic scaling of throughput and

storage, making it ideal for apps that require

extremely low latency, anywhere in the world.

With Azure Cosmos DB, you get things that

you can’t find anywhere else. It’s the only

database service that offers five well-defined

consistency levels, enabling you to avoid the

all-or-nothing tradeoffs you face with most

NoSQL databases. It even indexes your data

for you as it’s ingested, without requiring you

to deal with schema or index management.

And it delivers guaranteed high availability

and low latency, all backed by industry-

leading service-level agreements (SLAs).

Best of all, because Azure Cosmos DB is a fully

managed Microsoft Azure service, you won’t

need to manage virtual machines, deploy and

configure software, or deal with upgrades.

Every database is automatically backed up,

protected against regional failures, and

encrypted, so you won’t have to worry about

those things either—leaving you with even

more time to focus on your app.

A brief history of Azure Cosmos DB

As a cloud service, Azure Cosmos DB is built

from the ground up for multitenancy, elastic

scalability, high availability, and global

distribution—with low latencies and intuitive,

predictable consistency levels. The work

began in 2010, when developers at Microsoft

set out to build a database that could meet

those fundamental requirements for internal

global apps. The result was a new fully

managed nonrelational database service

called Azure DocumentDB.

Seven years later, we announced Azure

Cosmos DB, the first globally distributed,

multi-model database service for building

planet-scale apps. Since then, we’ve added

support for new APIs, a native Apache Spark

connector, the Azure Cosmos DB Change Feed

Processor Library (which provides a sorted list

of documents in the order in which they were

modified), support for Azure Cosmos DB in

Check out our technical

training series

This seven-part webinar series covers

the following topics:

• Technical overview of Azure

Cosmos DB

• Build real-time personalized

experiences with AI and serverless

technology

• Using the Gremlin and Table APIs

with Azure Cosmos DB

• Build or migrate your Mongo DB

app to Azure Cosmos DB

• Understanding operations of Azure

Cosmos DB

• Build serverless apps with Azure

Cosmos DB and Azure Functions

• Apply real-time analytics with

Azure Cosmos DB and Spark

https://docs.microsoft.com/en-us/azure/cosmos-db/introduction
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/cosmos-db/how-to-multi-master
https://docs.microsoft.com/azure/cosmos-db/how-to-multi-master
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/azure/cosmos-db/index-overview
https://docs.microsoft.com/azure/cosmos-db/index-overview
https://azure.microsoft.com/support/legal/sla/cosmos-db/
https://azure.microsoft.com/support/legal/sla/cosmos-db/
https://www.youtube.com/watch?v=7mOJifoKxvQ&t=463s
https://www.youtube.com/watch?v=7mOJifoKxvQ&t=463s
https://www.youtube.com/watch?v=DOUoMAosq40&t=6s
https://www.youtube.com/watch?v=DOUoMAosq40&t=6s
https://www.youtube.com/watch?v=DOUoMAosq40&t=6s
https://www.youtube.com/watch?v=nQed5IBbb5g
https://www.youtube.com/watch?v=nQed5IBbb5g
https://www.youtube.com/watch?v=3CzxCNROiSA
https://www.youtube.com/watch?v=3CzxCNROiSA
https://www.youtube.com/watch?v=d7qafhgk3CE
https://www.youtube.com/watch?v=d7qafhgk3CE
https://www.youtube.com/watch?v=SdTLfc_YcoE
https://www.youtube.com/watch?v=SdTLfc_YcoE
https://www.youtube.com/watch?v=P9Qz4pwKm_0
https://www.youtube.com/watch?v=P9Qz4pwKm_0

6

the Azure Storage Explorer, and a number of

features for monitoring and troubleshooting.

In January 2018, Info World’s 2018 Technology

of the Year awards recognized Azure Cosmos

DB, zeroing in on its “innovative approach to

the complexities of building and managing

distributed systems.”

So just how did we achieve this? By design,

Azure Cosmos DB does three things very well:

• Partitioning, which is what enables elastic

scale out of storage and throughput.

• Replication, which enables turnkey global

distribution—augmented with a set of

well-defined consistency levels to let you

tune consistency versus performance.

• Resource governance, through which

Azure Cosmos DB can offer

comprehensive SLAs encompassing the

four dimensions of global distribution that

customers care about the most:

throughput, latency at the ninety-ninth

percentile, availability, and consistency.

Key features and capabilities

To understand how you can use Azure

Cosmos DB to build infinitely scalable, highly

responsive global apps, it’s worth looking at

its key capabilities in more detail. Later in this

e-book, we’ll take a deeper dive into many of

these same concepts.

Multiple data models. Azure Cosmos DB is

the only fully managed service that natively

supports document, graph, key-value, and

columnar NoSQL data models—all in one

place. These data models are supported

through the following APIs, with SDKs

available in multiple languages:

• SQL API: An API for accessing the core

schema-less JSON document-oriented

database engine with rich SQL querying

capabilities.

• Azure Cosmos DB API for MongoDB: An

API for accessing the document- oriented

massively scalable MongoDB-as-a-service

that you can use to easily move existing

MongoDB apps to the cloud. The

MongoDB API enables connectivity

between Azure Cosmos DB and existing

MongoDB libraries, drivers, tools, and

apps.

• Cassandra API: An API for accessing the

column based globally distributed

Cassandra-as-a-service, which makes it

easy to move existing Apache Cassandra

apps to the cloud. The Cassandra API

enables connectivity between Azure

Cosmos DB and existing Cassandra

libraries, drivers, tools, and apps.

• Gremlin (graph) API: An API to the fully

managed, horizontally scalable database

service that supports Open Graph APIs

(based on the Apache TinkerPop

specification).

• Azure Table API: An API built to provide

automatic indexing, guaranteed low

latency, global distribution, and other

features of Azure Cosmos DB to existing

Azure Table storage apps with very

minimal effort.

Figure 1. Azure Cosmos DB natively supports document, graph, key value, and columnar data models.

https://www.infoworld.com/article/3252231/application-development/technology-of-the-year-2018-the-best-hardware-software-and-cloud-services.html
https://www.infoworld.com/article/3252231/application-development/technology-of-the-year-2018-the-best-hardware-software-and-cloud-services.html
https://docs.microsoft.com/azure/cosmos-db/sql-api-query-reference
https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction
https://docs.microsoft.com/azure/cosmos-db/mongodb-feature-support
https://docs.microsoft.com/azure/cosmos-db/mongodb-feature-support
https://docs.microsoft.com/azure/cosmos-db/mongodb-feature-support
https://docs.microsoft.com/azure/cosmos-db/mongodb-feature-support
https://docs.microsoft.com/azure/cosmos-db/cassandra-introduction
https://cassandra.apache.org/
https://docs.microsoft.com/azure/cosmos-db/graph-introduction
http://tinkerpop.apache.org/
http://tinkerpop.apache.org/
https://docs.microsoft.com/azure/cosmos-db/table-introduction

7

Turnkey global distribution. Azure Cosmos

DB is the only database service that delivers

turnkey global distribution. It lets

you distribute your data to any number

of Azure regions with just a few mouse clicks,

keeping your data close to your users to

maximize app performance. With the Azure

Cosmos DB multihoming APIs, your app

always knows where the nearest copy of your

data resides, without any configuration

changes, even as you add and remove

regions.

Multi-master support. With multi-master

support (multi-region writes), you can write

data to any region associated with your Azure

Cosmos DB account and have those updates

propagate asynchronously, enabling you to

seamlessly scale both write and read

throughput anywhere around the world. You’ll

get single-digit millisecond write latencies at

the ninety-ninth percentile, 99.999 percent

write (and read) availability, and

comprehensive and flexible built-in conflict

resolution. Multi-master support is crucial for

building globally distributed apps and

significantly simplifies their development.

Limitless, elastic scale out of storage and

throughput. With Azure Cosmos DB, you pay

only for the storage and throughput that you

need—and can independently and elastically

scale storage and throughput at any time,

across the globe.

Guaranteed low latency. With its latch-free,

write-optimized database engine, Azure

Cosmos DB delivers guaranteed low latency.

For a typical 1-KB item, reads are guaranteed

to be under 10 milliseconds at the ninety-

ninth percentile; indexed writes are

guaranteed to be under 10 milliseconds at the

ninety-ninth percentile, within the same Azure

region. Median latencies are even lower, at

under 5 milliseconds.

Five well-defined consistency options.

Azure Cosmos DB is the only database service

that offers five well-defined, practical, and

intuitive consistency levels—ranging from

strong to eventual. In between those two

extremes, you get three intermediate

consistency levels to choose from (bounded

staleness, consistent-prefix, and session),

enabling you to fine-tune the tradeoffs

between consistency and latency for your app.

No schema or index management. Azure

Cosmos DB lets you rapidly iterate without

worrying about schemas or indexes. The Azure

Cosmos DB database engine is schema

agnostic, and Azure Cosmos DB is the only

database service that automatically indexes all

the data it ingests, resulting in blazing-fast

queries. It works across all supported data

models, without the need for schemas or

secondary indexes.

Global presence. As a foundational Azure

service, Azure Cosmos DB is available in all

regions where Azure is available— currently

54 regions worldwide.

Industry-leading security and compliance.

When you choose Azure Cosmos DB, you run

on Microsoft Azure—the world’s most trusted

cloud, with more compliance offerings than

any other cloud provider. Data within Azure

Cosmos DB is always encrypted, both at rest

and in motion, as are indexes, backups, and

attachments. Encryption is enabled by default,

in a manner that’s transparent to your app

and has no impact on performance,

throughput, or availability.

“Always on” availability. Azure Cosmos DB

provides a 99.99 percent availability SLA for all

single-region accounts and a 99.999 percent

read availability SLA for all multi-region

accounts. Automatic failover helps protect

against the unlikely event of a regional

outage, with all SLAs maintained. You can

prioritize failover order for mult-iregion

accounts and can manually trigger failover to

test the end-to-end availability of your app—

with guaranteed zero data-loss.

https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://azure.microsoft.com/regions/
https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-sql-api
https://docs.microsoft.com/azure/cosmos-db/how-to-multi-master
https://docs.microsoft.com/azure/cosmos-db/how-to-multi-master
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://azure.microsoft.com/support/legal/sla/cosmos-db/v1_3/
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/azure/cosmos-db/index-overview
https://docs.microsoft.com/azure/cosmos-db/index-overview
https://azure.microsoft.com/global-infrastructure/regions/
https://gallery.technet.microsoft.com/Overview-of-Azure-c1be3942
https://gallery.technet.microsoft.com/Overview-of-Azure-c1be3942
https://azure.microsoft.com/support/legal/sla/cosmos-db/v1_3/
https://azure.microsoft.com/support/legal/sla/cosmos-db/v1_3/
https://azure.microsoft.com/support/legal/sla/cosmos-db/v1_3/
https://azure.microsoft.com/support/legal/sla/cosmos-db/v1_3/

8

Unmatched, enterprise-grade SLAs. With

Azure Cosmos DB, you can rest assured that

your apps are running on an enterprise-grade

database service. In fact, Azure Cosmos DB is

the first and only database service to offer

industry-leading, financially-backed SLAs for

99.999 percent high availability, latency at the

ninety-ninth percentile, guaranteed

throughput, and consistency.

Figure 2. Azure Cosmos DB offers industry-leading, financially backed SLAs

Common use cases

Now that we’ve covered the key features and

capabilities of Azure Cosmos DB, just how can

you put them to use? As a fully managed,

multi-model database service, Azure Cosmos

DB is a good choice for a broad range of apps.

It’s especially well-suited for event-driven

serverless apps that require low latency and

that might need to scale rapidly and globally.

Add in its support for multiple data models

and APIs and five consistency levels, and you

have a NoSQL-compatible database service

capable of supporting most any scenario

where a traditional relational database isn’t a

good fit.

That said, here are common scenarios where

Microsoft customers are using Azure Cosmos

DB:

• Globally distributed apps. Azure Cosmos

DB lets you build modern apps at a global

scale, ensuring uncompromised

performance no matter where your users

are. You can easily put copies of your data

in regions across the world, knowing you’ll

get guaranteed low latencies and built-in

failover to ensure high availability and

disaster recovery.

• Real-time customer experiences. The

guaranteed low latency provided by Azure

Cosmos DB makes it ideal for delivering

real-time customer experiences and other

latency-sensitive apps. And when you use

Azure Cosmos DB together with Azure

Databricks for its advanced analytics and

machine learning capabilities, you can

build apps that provide personalization

and real-time recommendations.

• Internet of things (IoT). Azure Cosmos

DB lets you accommodate diverse and

unpredictable IoT workloads—enabling

you to scale instantly and elastically to

handle sustained, write-heavy data

ingestion, all with uncompromised query

performance.

• E-commerce. Azure Cosmos DB supports

flexible schemas and hierarchical data,

making it well suited for storing product

catalog data where different products

have different attributes. This is one of the

reasons why Azure Cosmos DB is used

extensively in Microsoft’s own e-

commerce platforms.

• Gaming. Modern games rely on the cloud

to deliver personalized content like in-

https://azure.microsoft.com/support/legal/sla/cosmos-db/
https://azure.microsoft.com/services/databricks/
https://azure.microsoft.com/services/databricks/

9

game stats, social media integration, and

leaderboards. Through its low-latency

reads and writes, Azure Cosmos DB can

help deliver an engaging, uncompromised

in-game experience across large and

changing user bases. At the same time, its

instant, elastic scalability enables it to

easily support the traffic spikes that are

likely to occur during new game launches,

online tournaments, and feature updates.

• Serverless apps. Azure Cosmos DB

integrates natively with Azure Functions,

making it easy to build event-driven,

serverless apps that let you seamlessly

scale data ingestion, throughput, and data

volumes. Your data will be made available

immediately and indexed automatically,

with stable ingestion rates and query

performance. And with the change feed

support in Azure Cosmos DB, you can

easily use changes in your data to kick off

other actions and/or synchronize multiple

data models in your event-driven app.

• Big data and analytics. Azure Cosmos DB

integrates effortlessly with Azure

Databricks for advanced analytics via

Apache Spark, enabling you to implement

machine learning at scale across fast-

changing, high-volume, globally

distributed data. The Spark to Azure

Cosmos DB connector lets Azure Cosmos

DB act as an input source or output sink

for Spark jobs and can even push down

predicate filtering to indexes within Azure

Cosmos DB to improve the efficiency of

Spark jobs.

• Migration of existing NoSQL workloads

to the cloud. Azure Cosmos DB makes it

easy to migrate existing NoSQL workloads

to the cloud—in many cases, with no more

than a change to a connection string in

your app. With the Azure Cosmos DB

Mongo DB and Cassandra APIs, you can

migrate on-premises MongoDB and

Cassandra databases to Azure Cosmos DB,

respectively, then continue to use your

existing tools, drivers, libraries, and SDKs.

You won’t need to spend any more time

managing an on-premises database and

will benefit from all that Azure Cosmos DB

brings to the table. The videos on the

Azure Cosmos DB YouTube channel can

help you get started.

On the following pages, we take a deeper look

at these and other key capabilities of Azure

Cosmos DB, including how they work and how

to put them to use. We’re confident that, by

the time you finish reading, you’ll be ready to

choose an API and go hands-on with Azure

Cosmos DB. Or, if you prefer to learn by

doing, you can skip forward to Choosing a

data model and API, get started with your

chosen API, and refer to the Key Concepts

section of this e-book on an as-needed basis.

If you’d prefer to watch a video, many of these

same concepts are also covered in the first

webinar in the Azure Cosmos DB Technical

Training series.

https://docs.microsoft.com/azure/cosmos-db/change-feed
https://azure.microsoft.com/services/databricks/
https://azure.microsoft.com/services/databricks/
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos
https://info.microsoft.com/ww-landing-cosmos-db-training-series-multi-reg.html
https://info.microsoft.com/ww-landing-cosmos-db-training-series-multi-reg.html

10

Core concepts and

considerations

Azure Cosmos DB accounts

To begin using Azure Cosmos DB, you’ll need

to create an Azure Cosmos DB account under

your Azure subscription. If you don’t have an

Azure subscription, you can sign up for a free

one. You can also try Azure Cosmos DB for

free without an Azure subscription, without

any charges or commitments.

An Azure Cosmos DB account is the

fundamental unit of global distribution and

high availability for Azure Cosmos DB. To

globally distribute your data and throughput

across multiple Azure regions, you can add

Azure regions to your Azure Cosmos DB

account at any time. When an Azure Cosmos

DB account is associated with more than one

region, you can configure the account to have

one write region or multiple write regions (i.e.,

multi-master). Each Azure Cosmos DB account

can also be configured with a default

consistency level, which can be overridden on

an as-needed basis.

Currently, you can create a maximum of 100

Azure Cosmos DB accounts under one Azure

subscription. Each Azure Cosmos DB account

is identified by a unique DNS name and

supports a single Azure Cosmos DB API.

Manage an Azure Cosmos DB account

provides detailed instructions on how to

create an account, add or remove regions,

configure multiple write regions, enable

automatic failover, set failover priorities, and

perform a manual failover. Most Azure

Cosmos DB account management tasks can

be performed by using the Azure portal, Azure

CLI, or Azure PowerShell.

Figure 3. You can create an Azure Cosmos DB

account in just a few minutes.

https://azure.microsoft.com/free/?v=18.23
https://azure.microsoft.com/free/?v=18.23
https://azure.microsoft.com/try/cosmosdb/
https://azure.microsoft.com/try/cosmosdb/
https://docs.microsoft.com/azure/cosmos-db/how-to-manage-database-account

11

Resource model: Databases,

containers, and items

Developers can start using Azure Cosmos DB

by provisioning an Azure Cosmos DB account,

which includes choosing an API. Entities under

the Azure Cosmos DB account, called

resources, are uniquely identified by a stable

and logical URI and are represented as a JSON

document. The overall resource model of an

app using Azure Cosmos DB is a hierarchical

overlay of the resources rooted under the

Azure Cosmos DB account and can be

navigated using hyperlinks.

An Azure Cosmos DB account manages one or

more databases, which in turn manage users,

permissions, and containers. Containers are

schema agnostic, containing items (i.e., your

data), stored procedures, triggers, and user-

defined functions (UDFs). If your Azure Cosmos

DB account is associated with multiple regions,

then the containers within it will also contain

merge procedures and conflicts.

Depending on the API selected when creating

the Azure Cosmos DB account, container and

item resources are projected in different ways.

For example:

• With the SQL and MongoDB (document-

oriented) APIs, containers are projected as

containers and collections respectively and

items are projected as documents for both.

• With the Gremlin API, containers are

projected as graphs and items are

projected as nodes and edges. (Using the

multi-model capabilities of Azure Cosmos

DB, you can also query the nodes and

edges as documents using the SQL API.)

• With the Table (key-value) API, containers

are projected as tables and items are

projected as rows.

• With the Cassandra (columnar) API,

containers are projected as key-spaces and

items are projected as rows.

Figure 4. The Azure Cosmos DB resource model.

The Azure Cosmos DB documentation provides more information on databases, containers, and items.

https://docs.microsoft.com/azure/cosmos-db/databases-containers-items

12

Partitioning and horizontal

scalability

Azure Cosmos DB containers can provide

virtually unlimited storage and throughput.

They can scale from a few requests per second

into the millions, and from a few gigabytes of

data to several petabytes. But just how does

Azure Cosmos DB achieve this? If you’ve ever

sharded a database, you probably have an

idea—including how complex it can get. With

Azure Cosmos DB, the service does 99 percent

of the work for you, as long as you choose a

good partition key (more on this later).

Here’s how it works: In Azure Cosmos DB,

there are two types of partitioning: physical

and logical. Physical partitioning, which is how

Azure Cosmos DB delivers virtually unlimited

storage and throughput, is built into Azure

Cosmos DB and is transparent to you as a

developer. Containers, which are logical

resources, can span one or more physical

partition sets (composed of replicas or

servers), each of which has a fixed amount of

reserved, SSD-backed storage. The number of

physical partition sets across which a

container is distributed is determined

internally by Azure Cosmos DB based on the

storage size and the throughput you’ve

provisioned for the container.

All physical partition management, including

that required to support scaling, also is fully

managed by Azure Cosmos DB; when a

container meets the partitioning prerequisites,

the act of partitioning is transparent to your

app, shielding you from a great deal of

complexity. The service handles the

distribution of data across physical and logical

partitions and the routing of query requests to

the right partition—without compromising the

availability, consistency, latency, or throughput

of an Azure Cosmos DB container. Again, you

don’t need to worry about physical

partitioning—it’s handled at runtime

automatically by the service.

You should, however, be aware of how logical

partitioning works in Azure Cosmos DB,

including the importance of choosing a good

partition key at design time. Here’s why: the

data within a container is horizontally

distributed and transparently managed

through the use of logical resource partitions,

which are also known as a customer-specified

partition keys, each of which is limited to 10

GB. For example, in the following diagram, a

single container has three physical partition

sets, each of which stores the data for one or

more partition keys (in this example, LAX,

AMS, and MEL). Each of the LAX, AMS, and

MEL partition keys can’t grow beyond the

maximum logical partition limit of 10 GB.

Figure 5. A single Azure Cosmos DB container distributed over three logical resource partitions.

13

Many partition keys can be co-located on a

single physical partition set and are

automatically redistributed by the service as

needed to accommodate growth in traffic,

storage, or both. Because of this, you don’t

need to worry about having too many

partition key values. In fact, having more

partition key values is generally preferred to

fewer partition key values. This is because a

single partition key value will never span

multiple physical partition sets.

The Azure Cosmos DB documentation

provides an overview of partitioning in Azure

Cosmos DB, as well as additional detail on

physical and logical partitions.

Choosing a good partition key

Choosing a good partition key is a critical

design decision, as it’s really the only factor

that can limit horizontal scalability. To scale

effectively with Azure Cosmos DB, you’ll need

to pick a good partition key when you create

your container. You should choose a partition

key such that:

• The storage distribution is even across all

the keys.

• The volume distribution of requests at a

given point in time is even across all the

keys.

• Queries that are invoked with high

concurrency can be efficiently routed by

including the partition key in the filter

predicate.

In general, a partition key with higher

cardinality is preferred because it typically

yields better distribution and scalability. The

Azure Cosmos DB documentation provides

additional guidance for choosing a partition

key. The first webinar in our Azure Cosmos DB

Technical Training series also covers how

partitioning works and how to choose a good

partition key.

In selecting a partition key, you may want to

consider whether to use unique keys to add a

layer of data integrity to your database. By

creating a unique key policy when a container

is created, you ensure the uniqueness of one

or more values per partition key. When a

container is created with a unique key policy,

it prevents the creation of any new or updated

items with values that duplicate values

specified by the unique key constraint. For

example, in building a social app, you could

make the user's email address a unique key—

thereby ensuring that each record has a

unique email address and no new records can

be created with duplicate email addresses.

You may also want to consider the use of

synthetic partition keys. Here’s why: As stated

above, it’s considered a best practice to have a

partition key with many distinct values, as a

means of ensuring that your data and

workload is distributed evenly across the items

associated with those partition key values. If

such a property doesn’t exist in your data, you

can construct a synthetic partition key in

several ways, such as by concatenating

multiple properties of an item, appending a

random suffix (like a random number) at the

end of a partition key value, or by using a pre-

calculated suffix based on something you

want to query.

https://docs.microsoft.com/azure/cosmos-db/partitioning-overview
https://docs.microsoft.com/azure/cosmos-db/partitioning-overview
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/partition-data
https://docs.microsoft.com/azure/cosmos-db/partitioning-overview#choose-partitionkey
https://docs.microsoft.com/azure/cosmos-db/partitioning-overview#choose-partitionkey
https://info.microsoft.com/ww-landing-cosmos-db-training-series-multi-reg.html
https://info.microsoft.com/ww-landing-cosmos-db-training-series-multi-reg.html
https://docs.microsoft.com/azure/cosmos-db/unique-keys
https://docs.microsoft.com/azure/cosmos-db/synthetic-partition-keys

14

Request units and provisioned

throughout

Request units per second (RU/s)—often

represented in the plural form RUs—are the

“throughput currency” of Azure Cosmos DB.

To establish the throughput you’ll need, you

reserve a number of RUs, which are

guaranteed to be available to your app on a

per-second basis. As your app runs, each

operation in Azure Cosmos DB (such as

writing a document, performing a query, and

updating a document) consumes CPU,

memory, and IOPS—a blended measure of

compute resources used, which is expressed in

RUs.

The number of RUs for an operation is

deterministic. Azure Cosmos DB supports

various APIs that have different operations,

ranging from simple reads and writes to

complex graph queries. Because not all

requests are equal, requests are assigned a

normalized quantity of RUs, based on the

amount of computation required to serve the

request.

RUs let you scale your app’s throughput with one simple dimension, which is much easier than

separately managing CPU, memory, and IOPS. You can dynamically dial RUs up and down by using the

Azure portal or programmatically, enabling you to avoid paying for spare capacity that you don’t need.

For example, if your database traffic is heavy from 9 AM to 5 PM, you can scale up your RUs for those

hours and then scale back down for the remaining 16 hours when database traffic is light.

Figure 6. Request units are the normalized currency of throughput for various database operations.

The Azure Cosmos DB documentation provides more information on RUs, including how to specify RU

capacity, variables to take into consideration when estimating the number of RUs to reserve, and what

happens—and how to how to handle it—when your app exceeds reserved throughput.

https://docs.microsoft.com/azure/cosmos-db/request-units

15

Understanding throughput

requirements

By understanding your app’s throughput

requirements and the factors that affect RU

charges, you can run your app as cost-

effectively as possible. In estimating the

number of RUs to provision, it's important to

consider the following variables:

• Item size. As size increases, the number of

RUs consumed to read or write the data

also increases.

• Item property count. Assuming default

indexing of all properties, the RUs

consumed to write a document, node, or

entity increase as the property count

increases.

• Data consistency. Data consistency levels

like Strong or Bounded Staleness

(discussed later under Consistency)

consume more RUs than other consistency

levels when reading items.

• Indexed properties. An index policy on

each container determines which

properties are indexed by default. You can

reduce RU consumption for write

operations by limiting the number of

indexed properties or by enabling lazy

indexing.

• Query patterns. The complexity of a

query affects how many RUs are

consumed for an operation. The number

of query results, the number of predicates,

the nature of the predicates, the number

of user-defined functions, the size of the

Capacity planning made easy

For the developer, request units (RUs) immensely simplify capacity planning. Say you have an

on-premises database, which you’re running on a server that has a given amount of all three key

system resources: CPU, memory, and I/O. Now say you want to scale that database from 1,000

requests per second to 10,000 requests per second. How much more RAM do you buy? How

much CPU do you buy? Do you even know which is the bottleneck?

You might do some stress testing and find that RAM is indeed the bottleneck, but that doesn’t

necessarily tell you how much RAM translates to how many requests per second. Furthermore,

as soon as you add some RAM, CPU might become the bottleneck. And as you add more

processor cores, I/O might become the new bottleneck. Clearly, this approach gives you a very

difficult set of dimensions to scale against—and that’s for a single, monolithic server. Imagine

doing this for a distributed database.

Azure Cosmos DB uses a machine-learning model to provide a predictable RU charge for each

operation. So if you create a document today and it costs 5 RUs, then you can rest assured that

the same request will cost you 5 RUs tomorrow and the day after—inclusive of all background

processes. This lets you forecast required capacity with some basic “mental math,” using one

simple dimension.

For example, in the previous scenario, where you want to scale from 1,000 operations per second

to 10,000, you’ll need 10 times the number of RUs. So if it takes 5,000 RUs to support 1,000 writes

per second, you can rest assured that you can support 10,000 writes per second with 50,000 RUs.

It’s really that simple. Just provision the RUs that you’ll want, and Azure Cosmos DB will set aside

the necessary system resources for you, abstracting all the complexity in terms of CPU, memory,

and I/O.

16

source data, and projections all affect the

cost of query operations.

• Script usage. As with queries, stored

procedures and triggers consume RUs

based on the complexity of the operations

being performed. As you develop your

app, inspect the request charge header to

better understand how each operation

consumes RU capacity.

One method for estimating the amount of

reserved throughput required by your app is

to record the RU charge associated with

running typical operations against a

representative item used by your app. Then,

estimate the number of operations you

anticipate performing each second. Be sure to

also measure and include typical queries and

Azure Cosmos DB script usage. For example,

these are the steps you might take:

1. Record the RU charge for creating

(inserting) a typical item.

2. Record the RU charge for reading a

typical item.

3. Record the RU charge for updating a

typical item.

4. Record the RU charge for typical,

common item queries.

5. Record the RU charge for any custom

scripts (stored procedures, triggers, or

user-defined functions) that the app uses.

6. Calculate the required RUs given the

estimated number of each of the above

operations you anticipate runninhg in

each second.

There’s an Azure Cosmos DB capacity planner

to help you estimate your throughout needs,

and an article on finding the RU consumption

for any operation executed against a container

in Azure Cosmos DB.

Provisioning throughput on containers

and databases

With Azure Cosmos DB, you can provision

throughput at two granularities: at the

container level, and at the database level. At

both levels, provisioned throughput can be

changed at any time.

When you provision throughput at the

container level, the throughput you provision

is reserved exclusively for that container and is

uniformly distributed across all of its logical

partitions. If the workload running on a logical

partition consumes more than its share of

overall provisioned throughput, your database

operations against that logical partition are

rate-limited, which may result in a “429”

throttling exception response that includes

the amount of time (in milliseconds) that the

app must wait before retrying the request.

When this happens, for workloads that aren't

sensitive to latency, in many cases, you can

simply let the application handle it as part of

normal operations. The native SDKs

(.NET/.NET Core, Java, Node.js and Python)

implicitly catch this response, respect the

server-specified retry-after header, and retry

the request. Unless your account is being

accessed concurrently by multiple clients, the

next retry will succeed. If retries become

excessive, you can operationally scale the

provisioned RUs for the container to support

the capacity requirements of your app.

Provisioning throughput at the container level

is the most frequently used option for large-

scale production applications that require

guaranteed performance.

When you provision throughput at the

database level, the throughput is shared

across all the containers in the database.

Although this guarantees you’ll receive the

provisioned throughput for that database all

the time, because all containers within the

database share the provisioned throughput, it

doesn't provide any predictable throughput

https://cosmos.azure.com/capacitycalculator/
https://docs.microsoft.com/azure/cosmos-db/find-request-unit-charge
https://docs.microsoft.com/azure/cosmos-db/find-request-unit-charge
https://docs.microsoft.com/azure/cosmos-db/find-request-unit-charge
https://docs.microsoft.com/azure/cosmos-db/set-throughput#set-throughput-on-a-container
https://docs.microsoft.com/azure/cosmos-db/set-throughput#set-throughput-on-a-container
https://docs.microsoft.com/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://docs.microsoft.com/rest/api/cosmos-db/http-status-codes-for-cosmosdb
https://docs.microsoft.com/azure/cosmos-db/optimize-cost-throughput#optimize-with-rate-limiting-your-requests
https://docs.microsoft.com/azure/cosmos-db/set-throughput#set-throughput-on-a-database
https://docs.microsoft.com/azure/cosmos-db/set-throughput#set-throughput-on-a-database

17

guarantees for any particular container.

Instead, the portion of provisioned

throughput that a specific container may

receive is dependent on the number of

containers, choice of partition keys for those

containers, and the workload distribution

across the various logical partitions of those

containers.

Provisioning throughput at the database level

is a good starting point for development

efforts and small applications. Should the

need arise, you can always adopt a per-

container provisioning model later. You can

even combine the two throughput

provisioning models, in which case the

throughput provisioned at the database level

is shared among all containers in the database

for which throughput is not explicitly

provisioned at the container level.

The Azure Cosmos DB documentation

includes how-to guides for provisioning

throughput at the container level and

at the database level.

https://docs.microsoft.com/azure/cosmos-db/set-throughput#update-throughput-on-a-database-or-a-container
https://docs.microsoft.com/azure/cosmos-db/set-throughput#update-throughput-on-a-database-or-a-container
https://docs.microsoft.com/azure/cosmos-db/how-to-provision-container-throughput
https://docs.microsoft.com/azure/cosmos-db/how-to-provision-container-throughput
https://docs.microsoft.com/azure/cosmos-db/how-to-provision-database-throughput

18

Global distribution

As illustrated in the following diagram, with

Azure Cosmos DB, a customer’s resources can

be distributed along two dimensions. Within a

given region, all resources are horizontally

partitioned using resource partitions—called

local distribution. If you’ve set up more than

one region, each resource partition is also

replicated across geographical regions—called

global distribution.

Figure 7. A container can be both locally and

globally distributed.

Global distribution of resources in Azure

Cosmos DB is turnkey. At any time, outside of

geo-fencing restrictions (for example, China

and Germany), with a few button clicks or a

single API call, you can associate any number

of geographical regions with your Azure

Cosmos DB account. Regardless of the

amount of data or number of regions, Azure

Cosmos DB guarantees (at the ninety-ninth

percentile) that each newly associated region

will start processing client requests within 30

minutes for up to 100 TB of data, which is

achieved by parallelizing the seeding and

copying of data. You can also remove an

existing region or take a region that was

previously associated with your Azure Cosmos

DB account “offline.”

When you elastically scale throughput or

storage for a globally distributed database,

Azure Cosmos DB transparently performs the

necessary partition management operations

across all the regions, continuing to provide a

single system image, independent of scale,

distribution, or any failures.

Azure Cosmos DB supports both explicit and

policy-driven failovers, allowing you to control

the end-to-end system behavior in the event

of failures. In the rare event of an Azure

regional outage or datacenter outage, Azure

Cosmos DB automatically triggers failovers of

all Azure Cosmos DB accounts with a presence

in the affected region. You can also manually

trigger a failover, as may be required to

validate the end-to-end availability of your

app. Because both the safety and liveness

properties of the failure detection and leader

election are guaranteed, Azure Cosmos DB

guarantees zero data-loss for a tenant-

initiated, manual-failover operation. (Azure

Cosmos DB guarantees an upper bound on

data loss for a system-triggered, automatic

failover due to a regional disaster.)

Upon regional failover, you won’t need to

redeploy your app. Azure Cosmos DB lets your

app interact with resources using either logical

(region-agnostic) or physical (region-specific)

endpoints—the former ensuring that your app

can transparently be multihomed in case of

failover, and the latter providing fine-grained

control for the app to redirect reads and

writes to specific regions.

With a multi-region account, Azure Cosmos

DB guarantees 99.999 percent availability,

regardless of data volumes, specified

throughput, the number of regions associated

with your Azure Cosmos DB account, or the

distance between the geographical regions

associated with your database. The same

holds true for SLAs around consistency,

availability, and throughput.

19

Figure 8. You can configure global distribution

using the Azure portal, with just a few clicks.

Clearly, the global distribution enabled by

Azure Cosmos DB can help ensure high

availability. But there’s a second very good

reason to use it: app responsiveness. You can’t

break the speed of light, which means

requesting data that’s stored halfway across

the globe is going to take a lot longer than

data that resides significantly closer to you.

Even under ideal network conditions, sending

a packet halfway across the globe can take

hundreds of milliseconds.

However, you can cheat the speed of light by

using data locality, taking advantage of Azure

Cosmos DB global replication to put copies of

your data in strategic locations that are close

to your users. Content delivery networks

(CDNs) have employed this approach

successfully for years when it comes to static

content; now Azure Cosmos DB lets you do

the same thing for dynamic content. Through

such an approach, you can often achieve data

retrieval times that are lower than 10

milliseconds, or an order of magnitude

reduction. And if your app is making several

round trips to the database, that can mean a

big difference in the user experience.

The Azure Cosmos DB documentation

provides more information on global

distribution, including how to associate your

Azure Cosmos DB account with any number of

regions using the Azure portal or the Azure

Cosmos DB resource provider’s REST APIs.

Multi-master replication

Azure Cosmos DB supports multi-master

replication, meaning that it supports multi-

region writes. When you configure multi-

region writes, you can write data to any region

associated with your Azure Cosmos DB

account and have those updates propagate

asynchronously, enabling you to seamlessly

scale both write and read throughput around

the world—with single-digit millisecond write

latencies at the ninety-ninth percentile and

99.999 percent write availability (compared to

99.99 percent write availability for single-

region writes). To use the multi-master feature

in your application, you’ll need to enable

multi-region writes and configure the multi-

homing capability in Azure Cosmos DB.

When you use multi-region writes, you’ll need

to take into account update conflicts, which

can occur when the same item is concurrently

updated in multiple regions. Azure Cosmos DB

provides a flexible means of dealing with such

conflicts, allowing you to choose from two

resolution policies:

• Last write wins. By default, this conflict

resolution policy uses a system-defined

timestamp property based on the time-

synchronization clock protocol. If you’re

using the SQL API, you also can specify

any other custom numerical property (e.g.,

your own notion of a timestamp) to be

used for conflict resolution—sometimes

referred to as the conflict resolution path.

• Custom. This resolution policy, which is

available only for SQL API accounts,

supports application-defined semantics

for conflict reconciliation. When you set

this policy, you’ll also need to register a

merge stored procedure, which is

automatically invoked when conflicts are

detected. If you don’t register a merge

procedure on the container or the merge

procedure throws an exception at runtime

(Azure Cosmos DB provides exactly once

guarantee for the execution of a merge

https://docs.microsoft.com/azure/cosmos-db/high-availability
https://docs.microsoft.com/azure/cosmos-db/high-availability
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://docs.microsoft.com/azure/cosmos-db/distribute-data-globally
https://azure.microsoft.com/features/azure-portal/
https://docs.microsoft.com/rest/api/documentdbresourceprovider/
https://docs.microsoft.com/azure/cosmos-db/how-to-multi-master
https://docs.microsoft.com/azure/cosmos-db/how-to-multi-master
https://docs.microsoft.com/azure/cosmos-db/how-to-multi-master

20

procedure as part of the commitment

protocol), the conflicts are written to the

conflicts feed for manual resolution by

your application.

The Azure Cosmos DB documentation

provides more information on conflict types

and resolution policies, as well as a how-to

article on managing conflict resolution

policies.

How provisioned throughout is

distributed across multiple regions

Earlier in this e-book, we discussed how

provisioned throughput is expressed in RU/s,

or RUs, which measure the “cost” of both read

and write operations against an Azure Cosmos

DB container. If you provision 'R' RUs on a

container (or database), Azure Cosmos DB

ensures that 'R' RUs are available in each

region associated with your Azure Cosmos DB

account. Each time you add a new region to

your account, Azure Cosmos DB automatically

provisions 'R' RUs in the newly added region.

Assuming that a Cosmos container is

configured with 'R' RUs and there are 'N'

regions associated with the Cosmos account,

then:

• If the Azure Cosmos DB account is

configured with a single write region, the

total RUs available globally on the

container = R x N.

• If the Azure Cosmos DB account is

configured with multiple write regions, the

total RUs available globally on the

container = R x (N+1). The additional R

RUs (i.e., the “+1” part) are automatically

provisioned to process cross-region

update conflicts and anti-entropy traffic.

It’s also worth noting that your choice of

consistency level (discussed next) also affects

throughput. In general, you’ll get greater read

throughout for the more relaxed consistency

levels (e.g., session, consistent prefix and

eventual consistency) compared to stronger

consistency levels (e.g., bounded staleness or

strong consistency).

https://docs.microsoft.com/azure/cosmos-db/conflict-resolution-policies
https://docs.microsoft.com/azure/cosmos-db/conflict-resolution-policies
https://docs.microsoft.com/azure/cosmos-db/how-to-manage-conflicts
https://docs.microsoft.com/azure/cosmos-db/how-to-manage-conflicts
https://docs.microsoft.com/azure/cosmos-db/how-to-manage-conflicts

21

Consistency

Azure Cosmos DB makes using geographic

distribution to build low-latency global apps

not only possible, but also easy. As a write-

optimized database, it offers multiple,

intuitive, tunable consistency levels to give

you read predictability, let you make the right

tradeoffs between consistency and latency,

and help you correctly implement your

geographically distributed app. But why is

consistency so important, and why are the five

consistency levels provided by Azure Cosmos

DB better than what you can get with any

other NoSQL database?

Most commercially available distributed

database fall into two categories: either they

don’t offer well-defined, provable consistency

choices, or they offer only the two extremes:

strong concurrency, or eventual concurrency.

Systems that fall into the first category burden

developers with the minutiae of replication

protocols and make difficult tradeoffs

between consistency, availability, latency, and

throughput. Systems in the second category

force developers to choose between the two

extremes, neither of which is optimally suited

for many of the real-world scenarios that are

driving the development of globally

distributed apps.

For example, while the strong consistency

level is the gold standard of programmability,

it comes at the steep price of much higher

latency (in steady state), reduced availability

(in the face of failures), and lower read

scalability. Conversely, with eventual

concurrency, you’ll get great performance, but

a complete lack of predictability when it

comes to whether you’re getting the latest

and greatest data. Despite an abundance of

research and proposals, the distributed

database community has not been able to

commercialize consistency levels beyond

strong and eventual consistency—that is, until

now.

Azure Cosmos DB allows you to choose from

five well-defined consistency levels, spanning

the spectrum from strong to eventual with

three intermediate levels: bounded-staleness,

session, and consistent prefix. You can specify

the default consistency level for an Azure

Cosmos DB account, which will apply to all

data within all partition sets across all regions.

If you want, you can override the default

consistency level on a per-request basis.

Figure 9. Azure Cosmos DB offers five well-defined consistency levels, enabling you to fine-tune the tradeoffs

between consistency and latency for your app.

22

The following table captures the guarantees and characteristics associated with each consistency level.

Consistency

level

Guarantees and characteristics

Strong • Offers a linearizability guarantee, with reads guaranteed to return the most

recent version of an item.

• Guarantees that a write is only visible after it’s committed durably by the

majority quorum of replicas. A write is either synchronously committed

durably by both the primary and the quorum of secondaries, or it’s

abandoned. A read is always acknowledged by the majority read quorum; a

client can never see an uncommitted or partial write and is always

guaranteed to read the latest acknowledged write.

• The cost of a read operation (in terms of request units consumed) with

strong consistency is higher than session and eventual, but the same as

bounded staleness.

Bounded

staleness

• Guarantees that the reads may lag behind writes by at most K versions or

prefixes of an item or t time interval. (When choosing bounded staleness,

the “staleness” can be configured in two ways: number of versions K of the

item by which the reads lag behind the writes, and the time interval t.)

• Offers total global order except within the “staleness window.” The

monotonic read guarantees exist within a region both inside and outside

the “staleness window.”

• Provides a stronger consistency guarantee than session, consistent-prefix,

or eventual consistency. For globally distributed apps, we recommend that

you use bounded staleness for scenarios where you would like to have

strong consistency but also want 99.999 percent availability and low

latency.

• The cost of a read operation (in terms of RUs consumed) with bounded

staleness is higher than session and eventual consistency, but the same as

strong consistency.

Session • Unlike the global consistency offered by strong and bounded-staleness

consistency levels, session consistency is scoped to a client session.

• Ideal for all scenarios where a device or user session is involved because it

guarantees monotonic reads, monotonic writes, and read your own writes

(RYW) guarantees.

• Provides predictable consistency for a session and maximum read

throughput while offering the lowest latency writes and reads.

• The cost of a read operation (in terms of RUs consumed) is less than strong

and bounded staleness but more than eventual consistency.

https://aphyr.com/posts/313-strong-consistency-models

23

Consistent

prefix

• Guarantees that in the absence of any further writes, the replicas within the

group eventually converge.

• Guarantees that reads never see out-of-order writes. If writes were

performed in the order A, B, C, then a client sees either A; A, B; or A, B, C,

but never an order like A, C or B, A, C.

Eventual • Guarantees that in the absence of any further writes, the replicas within the

group eventually converge.

• Is the weakest form of consistency, where a client might get values that are

older than the ones it had seen before.

• Provides the weakest read consistency but offers the lowest latency for

both reads and writes.

• The cost of a read operation (in terms of RUs consumed) is the lowest of all

the Azure Cosmos DB consistency levels.

All consistency levels are supported by our

consistency SLAs. To report any violations, we

employ a linearizability checker, which

continuously operates over our service

telemetry. For bounded staleness, we monitor

and report any violations to K and t bounds.

For all four relaxed consistency levels, we track

and report the probabilistic bounded-

staleness (PBS) metric among other metrics.

The Azure Cosmos DB documentation

provides more information on consistency

levels, including how to configure the default

consistency level for an Azure Cosmos DB

account, guarantees associated with

consistency levels, and consistency levels

explained through an example based on

baseball scores. The documentation also

includes articles on:

• Choosing the right consistency level based

on which API you’re using, as well as

practical considerations related to

consistency guarantees.

• Mapping between Apache Cassandra or

MongoDB and Azure Cosmos DB

consistency levels (when using SQL API,

Gremlin API, and Table API, the default

consistency level configured on the Azure

Cosmos DB account is used.)

• Consistency, availability, and performance

tradeoffs—including those between

consistency levels and latency, consistency

levels and throughput, and consistency

levels and data durability.

http://dl.acm.org/citation.cfm?id=1806634
http://pbs.cs.berkeley.edu/
http://pbs.cs.berkeley.edu/
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/azure/cosmos-db/consistency-levels
https://docs.microsoft.com/azure/cosmos-db/consistency-levels-choosing
https://docs.microsoft.com/azure/cosmos-db/consistency-levels-across-apis
https://docs.microsoft.com/azure/cosmos-db/consistency-levels-across-apis
https://docs.microsoft.com/azure/cosmos-db/consistency-levels-across-apis
https://docs.microsoft.com/azure/cosmos-db/consistency-levels-tradeoffs
https://docs.microsoft.com/azure/cosmos-db/consistency-levels-tradeoffs

24

Automatic indexing

Azure Cosmos DB provides automatic indexing, which you can tune and configure. It works across

every data model, automatically indexing every property of every record by default. You won’t need

to define schemas and indexes up front or manage them over time, so you’ll never have to do an alter

table or create index operation. Automatic indexing is based on a latch-free data structure and is

designed to run on the Azure Cosmos DB write-optimized database engine, enabling automatic

indexing while sustaining high data-ingestion rates.

Automatic indexing is made possible through the use of an inverted index. Here’s how it works, using

the two JSON documents in Figures 10 and 11 as an example. Note that the two records have different

schemas. Document 1 has a set of exports that have only a city property. Document 2, on the other

hand, has a set of exports where some of the cities also have a set of dealers.

Choosing a consistency level

The following scenarios illustrate when each consistency level might be appropriate:

• Strong consistency ensures that you’ll never see a stale read, making it a good fit for

scenarios like transaction processing, such as updating the state of an order.

• Bounded-staleness gives you an SLA on “how eventual is eventual?” You can think of this as

a window within which stale reads are possible, which you can configure in terms of time or

number of operations. Outside of this window, strong consistency is guaranteed.

• Session consistency is the sweet spot for most apps; it provides a means of scoping strong

consistency down to a single session, without paying the performance penalty associated with

global strong consistency. Take the case of a user posting a comment on Facebook: when the

page is refreshed, if the user doesn’t see his or her post, that user might repeat the process—

only to see multiple copies. With session concurrency, where reads follow your own writes

within a session, you can avoid this.

• Consistent prefix is good when you can handle some latency, as long as you’ll never see out-

of-order updates. A group chat app is a good example. Say you have Alice and Bob organizing

dinner, and saying “What time should we meet? How about 7:00? I’m busy then. How about

8:00? That’s great—let’s meet then.” If Carol and Dan are also part of the group chat and see

these messages out of order, they might not arrive at the proper time. With consistent prefix,

you can ensure that the messages arrive in the correct order.

• Eventual concurrency is a good choice where low latency matters above all else. Again, let’s

use the example of a Facebook post. You want it to load quickly and aren’t very concerned

whether the number of “Likes” takes into account every Like by every user up to that moment

in time, around the world.

About 73 percent of Azure Cosmos DB tenants use session consistency, while 20 percent prefer

bounded staleness. Also, approximately 3 percent of customers initially experiment with various

consistency levels before settling on a choice for their app, and only 2 percent of customers

override consistency levels on a per-request basis.

For more information on consistency levels in Azure Cosmos DB, check out the interactive e-book.

https://content.microsoft.com/apps-for-cats

25

Figure 10. Sample JSON document 1.

Figure 11. Sample JSON document 2.

Behind the scenes, using its ARS-based data model, Azure Cosmos DB models these records as trees:

the root node is the document ID (or record ID), the properties under the root become the child nodes,

and the instance values become the leaf nodes. The result is two different trees, each representing a

different record. This schema never goes away and is always defined at a record level.

By merging these trees into an inverted index, we can establish pointers to the actual underlying set

of records for our query results, as shown in Figure 12.

26

Figure 12. Inverted index based on sample documents 1 and 2.

Now, say we run a query on this container to

find all records where the country location is

Germany. By traversing the left side of the

tree, we find that Germany has a pointer to

records 1 and 2 and can efficiently return

records 1 and 2 in the query result set.

Similarly, by traversing the right side of the

tree, we can determine that a dealer with the

name Hans is unique to record 2.

One nice thing about this approach is that,

because most of the paths or properties in a

set of records will have a high degree of

commonality, we can automatically index

every property of every record while still

achieving high compression rates to minimize

storage overhead.

By default, Azure Cosmos DB indexes

everything. However, you can specify a set of

included paths and a set of excluded paths.

So, we include the path /*. More specific paths

will override entries with less specific paths, so

you can always include /* and exclude a set of

paths that you know you’ll never need to

query on—essentially, taking an opt-out

approach. If you want to take a more

traditional approach to indexing, you can

define a set of paths to be included.

The Azure Cosmos DB documentation

provides more information on indexing in

Azure Cosmos DB and working with indexing

policies.

https://docs.microsoft.com/azure/cosmos-db/index-overview
https://docs.microsoft.com/azure/cosmos-db/index-overview
https://docs.microsoft.com/azure/cosmos-db/index-policy
https://docs.microsoft.com/azure/cosmos-db/index-policy

27

Architectural

considerations

Change feed

A common design pattern in many

applications is to use changes to the data to

trigger additional actions, with IoT, gaming,

retail, and operational logging applications all

being good examples. Change feed support in

Azure Cosmos DB makes building such apps

easy. It works by listening to an Azure Cosmos

DB container for any changes and provides

them as a sorted list of documents that were

changed, in the order in which they were

modified. Change feed is available for the

container as a whole, or for each logical

partition key within the container. Change

feed output can be distributed across one or

more consumers for parallel processing.

Following are just a few of the ways you can

put change feed to use:

• Triggering a notification or a call to an API,

when an item is inserted or updated.

• Real-time stream processing for IoT or

real-time analytics processing on

operational data.

• Additional data movement by either

synchronizing with a cache or a search

engine or a data warehouse or archiving

data to cold storage.

Figure 13. Azure Cosmos DB change feed support makes it easy to build applications that use changes to data

to trigger additional actions.

You can work with change feed by using any

of the following options.

• Azure Functions. This is the simplest (and

recommended) option. When you create

an Azure Cosmos DB trigger in an Azure

Functions application, the Azure Function

gets triggered whenever there’s a change

to the specified container. Building

serverless apps, the next topic in this e-

book, discusses using Azure Functions

https://docs.microsoft.com/azure/cosmos-db/change-feed-functions
https://docs.microsoft.com/azure/cosmos-db/change-feed-functions
https://docs.microsoft.com/azure/cosmos-db/change-feed-functions

28

together with Azure Cosmos DB in greater

detail. (NOTE: Currently, the Azure Cosmos

DB trigger is supported for use with the

core SQL API only. For all other Azure

Cosmos DB APIs, you should access the

database from your function by using the

static client for your API.)

• Azure Cosmos DB SQL API SDK. The

Azure Cosmos DB change feed processor

library within the Azure Cosmos DB SQL

API SDK gives you complete, low-level

control of the change feed while shielding

you from excess complexity. It follows the

observer pattern, where your processing

function is called by the library. If you have

a high-throughput change feed or want to

distribute event processing across multiple

consumers for other reasons, you can use

the change feed processor library to

automatically divide the load among the

different clients—without you having to

write that code. If you want to build your

own load balancer, you can use the

change feed processor library to

implement a custom partition strategy.

The SDK can be downloaded here. (Note

the drop-down menu at the top of the

page, which provides access to SDKs for

other languages.)

The Azure Cosmos DB documentation

provides more information on change feed,

including how it works with different

operations, use cases and scenarios, ways to

work with change feed, and key features of

change feed.

Building serverless apps with

Azure Cosmos DB and Azure

Functions

Serverless computing is all about the ability to

focus on individual pieces of logic that are

repeatable and stateless; they require no

infrastructure management and they consume

resources only for the seconds, or

milliseconds, they run for. At the core of

serverless computing are functions, which are

made available in the Azure ecosystem by

Azure Functions. With the native integration

between Azure Cosmos DB and Azure

Functions, you can create database triggers,

input bindings, and output bindings directly

from your Azure Cosmos DB account—making

it easy to create and deploy event-driven

serverless apps with low-latency access to rich

data for a global user base.

Azure Cosmos DB and Azure Functions let you

integrate your databases and serverless apps

in the following ways:

• You can create an event-driven Azure

Cosmos DB trigger in Azure Functions.

This trigger relies on change-feed streams

to monitor your Azure Cosmos DB

container for changes. When any changes

are made to a container, the change-feed

stream is sent to the trigger, which

invokes the function.

• Alternatively, you can bind a function to

an Azure Cosmos DB container using an

input binding, which reads data from a

container when a function executes.

• You can also bind a function to an Azure

Cosmos DB container using an output

binding, which writes data to a container

when a function completes.

The Azure Cosmos DB documentation

provides more information on using Azure

Functions to integrate your databases and

serverless apps and on Azure Functions

bindings.

https://docs.microsoft.com/azure/cosmos-db/change-feed-processor
https://docs.microsoft.com/azure/cosmos-db/change-feed-processor
https://docs.microsoft.com/azure/cosmos-db/sql-api-sdk-dotnet
https://docs.microsoft.com/azure/cosmos-db/change-feed-processor
https://azure.microsoft.com/services/functions
https://docs.microsoft.com/azure/cosmos-db/serverless-computing-database
https://docs.microsoft.com/azure/cosmos-db/serverless-computing-database
https://docs.microsoft.com/azure/cosmos-db/serverless-computing-database
https://docs.microsoft.com/azure/azure-functions/functions-bindings-cosmosdb?toc=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fcosmos-db%2FTOC.json&bc=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fbread%2Ftoc.json
https://docs.microsoft.com/azure/azure-functions/functions-bindings-cosmosdb?toc=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fcosmos-db%2FTOC.json&bc=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fbread%2Ftoc.json

29

Server-side programming

Azure Cosmos DB supports language-

integrated, transactional execution of

JavaScript when using the SQL API in Azure

Cosmos DB. This allows you to write stored

procedures, triggers, and user-defined

functions (UDFs) in JavaScript, then have them

execute within the database engine. You can

create and execute triggers, stored

procedures, and UDFs by using the Azure

portal, the JavaScript query API in Azure

Cosmos DB, or the Azure Cosmos DB SQL API

client SDKs.

Stored procedures and triggers provide a

means of executing multi-document

transactions—a sequence of operations

performed as a single logical unit of work. In

Azure Cosmos DB, the JavaScript runtime is

hosted inside the database engine, which

means requests made within the stored

procedures and the triggers execute in the

same scope as the database session. This

enables Azure Cosmos DB to guarantee ACID

properties for all operations that are part of a

stored procedure or a trigger.

The Azure Cosmos DB documentation

provides more information on server-side

programming with Azure Cosmos DB,

including a discussion of benefits and

additional detail on transactions, bounded

execution, triggers, user-defined functions,

and the JavaScript language integrated query

API. There’s a separate article that includes

supported JavaScript functions in the

JavaScript query API and a SQL to JavaScript

cheat sheet.

https://portal.azure.com/
https://portal.azure.com/
https://docs.microsoft.com/azure/cosmos-db/javascript-query-api
https://docs.microsoft.com/azure/cosmos-db/javascript-query-api
https://docs.microsoft.com/azure/cosmos-db/how-to-use-stored-procedures-triggers-udfs
https://docs.microsoft.com/azure/cosmos-db/how-to-use-stored-procedures-triggers-udfs
https://docs.microsoft.com/azure/cosmos-db/stored-procedures-triggers-udfs
https://docs.microsoft.com/azure/cosmos-db/stored-procedures-triggers-udfs
https://docs.microsoft.com/azure/cosmos-db/javascript-query-api
https://docs.microsoft.com/azure/cosmos-db/javascript-query-api
https://docs.microsoft.com/azure/cosmos-db/javascript-query-api

30

Apache Spark to Azure Cosmos

DB Connector

The Apache Spark to Azure Cosmos DB

Connector lets you run Spark jobs on the data

stored in Azure Cosmos DB. You can use the

connector with Azure Databricks, Azure

HDInsight, which provide managed Spark

clusters on Azure. You can also use it with

your own Spark deployment. The Apache

Spark to Azure Cosmos DB Connector

provides a low-latency data source for Spark

that works for both batch and stream

processing.

Built-in operational analytics

with Apache Spark (in preview)

More recently, we announced a limited

preview of built-in operational analytics in

Azure Cosmos DB using Apache Spark. This

allows you to run analytics from Apache Spark

against data stored in an Azure Cosmos

account without a connector, instead providing

native support for Apache Spark jobs within

Azure Cosmos DB. Capabilities also include

built-in support for Jupyter notebooks, which

run within Azure Cosmos DB accounts.

Built-in support for Apache Spark in Azure

Cosmos DB will provide several advantages,

beginning with the fastest time to insight for

geographically distributed users and data. You

can also simplify your analytics architecture

and lower its TCO, as the system will have the

least number of data processing components

and avoid any unnecessary data movement

among them. Scalability will be built-in, and

you’ll have a security, compliance, and

auditing boundary that encompasses all the

data under management. Finally, you’ll be able

to deliver highly available analytics backed by

stringent SLAs.

The Azure Cosmos DB documentation

provides more information on its built-in

support for Apache Spark. Again, it’s currently

in limited preview, so if you want to try it out,

you’ll need to sign up for it here.

https://docs.microsoft.com/azure/cosmos-db/spark-connector
https://docs.microsoft.com/azure/cosmos-db/spark-connector
https://azure.microsoft.com/services/databricks
https://azure.microsoft.com/services/hdinsight/
https://azure.microsoft.com/services/hdinsight/
https://docs.microsoft.com/azure/cosmos-db/spark-api-introduction
https://docs.microsoft.com/azure/cosmos-db/spark-api-introduction
https://portal.azure.com/?feature.customportal=false#create/Microsoft.DocumentDB

31

Operational

considerations

Cost optimization with Azure

Cosmos DB

The pricing model for Azure Cosmos DB

simplifies cost management and planning, in

that you pay only for the throughout you’ve

provisioned (in RUs) and the storage that you

consume. It’s just one of the many reasons

why Azure Cosmos DB delivers such a

compelling total cost of ownership (TCO).

That said, just because Azure Cosmos DB

delivers a great TCO, it doesn’t mean that you

shouldn’t try to get the very most out of the

resources you’re paying for. The Azure

Cosmos DB documentation includes

numerous articles to help you optimize TCO—

from understanding your bill to optimizing the

cost of provisioned throughput. You’ll also

find articles on optimizing costs in relation to

queries, storage, reads and writes, geographic

distribution, development/test, and reserved

capacity.

Security

Azure Cosmos DB includes numerous features

and capabilities designed to help you prevent,

detect, and respond to database breaches.

That said, there are a few worth calling out

here:

• Data encryption. All data is encrypted at

rest and during transport, by default and

at no additional cost.

• Secure access. With Azure Cosmos DB,

data access is secured in several ways.

Administrative resources (Azure Cosmos

DB accounts, databases, users, and

permissions) are secured using master

keys. Application resources (containers,

documents, attachments, stored

procedures, triggers, and UDFs) are

secured using resource tokens.

• IP firewall. By default, an Azure Cosmos

DB account is accessible from the internet,

as long as the request is accompanied by

a valid authorization token. Configurable

IP-based access controls in Azure Cosmos

DB provide an additional layer of security,

enabling access only from approved

machines and/or cloud services (which still

need a valid authorization token).

• Access from virtual networks. You can

configure an Azure Cosmos DB account to

allow access only from specified a specific

subnet of a virtual network (Vnet). When

you do this, only requests originating from

those subnets will get a valid response;

requests originating from any other

source will receive a 403 (Forbidden)

response.

• Role-based access control. Azure

Cosmos DB provides built-in role-based

access control (RBAC) for common

management scenarios. An individual with

a profile in Azure Active Directory can

grant or deny access to resources (and

operations on Azure Cosmos DB

resources) by assigning these RBAC roles

to users, groups, service principals, or

managed identities. Role assignments are

scoped to control-plane access only,

which includes access to Azure Cosmos

accounts, databases, containers, and offers

(throughput).

Online backup and restore

Azure Cosmos DB automatically takes backups

of your data at regular intervals, which is done

without affecting the performance or

availability of database operations. All

backups are stored separately in Azure Blog

storage, with those backups geographically

replicated to protect against regional

disasters. These automatic backups can be

https://docs.microsoft.com/azure/cosmos-db/how-pricing-works
https://docs.microsoft.com/azure/cosmos-db/total-cost-ownership
https://docs.microsoft.com/azure/cosmos-db/total-cost-ownership
https://docs.microsoft.com/azure/cosmos-db/total-cost-ownership
https://docs.microsoft.com/azure/cosmos-db/understand-your-bill
https://docs.microsoft.com/azure/cosmos-db/optimize-cost-throughput
https://docs.microsoft.com/azure/cosmos-db/optimize-cost-throughput
https://docs.microsoft.com/azure/cosmos-db/optimize-cost-queries
https://docs.microsoft.com/azure/cosmos-db/optimize-cost-storage
https://docs.microsoft.com/azure/cosmos-db/optimize-cost-reads-writes
https://docs.microsoft.com/azure/cosmos-db/optimize-cost-regions
https://docs.microsoft.com/azure/cosmos-db/optimize-cost-regions
https://docs.microsoft.com/azure/cosmos-db/optimize-dev-test
https://docs.microsoft.com/azure/cosmos-db/cosmos-db-reserved-capacity
https://docs.microsoft.com/azure/cosmos-db/cosmos-db-reserved-capacity
https://docs.microsoft.com/azure/cosmos-db/database-security
https://docs.microsoft.com/azure/cosmos-db/database-security
https://docs.microsoft.com/azure/cosmos-db/database-security
https://docs.microsoft.com/azure/cosmos-db/database-encryption-at-rest
https://docs.microsoft.com/azure/cosmos-db/database-encryption-at-rest
https://docs.microsoft.com/azure/cosmos-db/secure-access-to-data
https://docs.microsoft.com/azure/cosmos-db/firewall-support
https://docs.microsoft.com/azure/cosmos-db/firewall-support
https://docs.microsoft.com/azure/cosmos-db/firewall-support
https://docs.microsoft.com/azure/cosmos-db/vnet-service-endpoint
https://docs.microsoft.com/azure/cosmos-db/vnet-service-endpoint
https://docs.microsoft.com/azure/cosmos-db/role-based-access-control
https://docs.microsoft.com/azure/cosmos-db/role-based-access-control

32

helpful if you accidentally delete or update

your Azure Cosmos account, database, or

container and need to recover that data.

Azure Cosmos DB takes snapshots of your

data every four hours. At any given time, only

the last two snapshots are retained. However,

if a container or database is deleted, Azure

Cosmos DB retains existing snapshots of that

container or database for 30 days.

With Azure Cosmos DB SQL API accounts, you

can also maintain and manage your own

backups. You can use Azure Data Factory to

periodically output any data to any Azure Data

Factory-supported storage destination, or you

can use the Azure Cosmos DB change feed to

read data periodically (for full backups and/or

incremental changes) and store that data in an

Azure Blob storage account.

The Azure Cosmos DB documentation

provides more information on online backup

and restore, including options to manage your

own backups, backup retention, restoring data

from online backups, and migrating restored

data to the original Azure Cosmos DB account.

(Although it’s possible to use the restored

account as the live account, it’s not a

recommended option for production

workloads.)

Compliance

To help customers meet their own compliance

obligations across regulated industries and

markets worldwide, Azure maintains the

largest compliance portfolio in the industry in

terms of both breadth (total number of

offerings) and depth (number of customer-

facing services in assessment scope). These

compliance offerings are grouped into four

segments (globally applicable, US

Government, industry specific, and region or

country/region specific) and are based on

various types of assurances, including formal

certifications, attestations, validations,

authorizations, and assessments produced by

independent third-party auditing firms, as well

as contractual amendments, self-assessments,

and customer guidance documents produced

by Microsoft. The Azure Cosmos DB

documentation provides a comprehensive list

of compliance certifications.

https://docs.microsoft.com/azure/data-factory/connector-azure-cosmos-db
https://docs.microsoft.com/azure/cosmos-db/change-feed
https://docs.microsoft.com/azure/cosmos-db/online-backup-and-restore
https://docs.microsoft.com/azure/cosmos-db/online-backup-and-restore
https://docs.microsoft.com/azure/cosmos-db/compliance
https://docs.microsoft.com/azure/cosmos-db/compliance

33

Building an app with Azure Cosmos DB

Choosing the right API

It’s easy to get up and running with Azure Cosmos DB. If you haven’t

used it before, we provide a wealth of getting started resources on the

following pages. Either way, the first thing you’ll need to do is choose

an API; each Azure Cosmos DB account supports one API, which you’ll

need to specify when creating an account, and each tutorial is specific

to an API. Read on for advice on when to consider each API, followed

by how to get started with the one you choose.

Figure 14. When you create an Azure Cosmos DB account, you’ll need to

choose an API.

One database, multiple APIs

Azure Cosmos DB natively supports multiple

data models and APIs, which we’re continuing

to add. It does this through an atom-record-

sequence (ARS) based core type system,

where atoms consist of a small set of primitive

types (such as string, bool, and number),

records are structs, and sequences are arrays

consisting of atoms, records, or sequences.

The Azure Cosmos DB database engine

translates and projects supported data models

onto this core ARS-based data model, which is

accessible from dynamically typed

programming languages and can be exposed

as is using JSON or other similar

representations. The same design also enables

native support for multiple APIs—enabling

developers to build their apps using popular

open-source APIs with all the benefits of an

Short on time? Try a

5-minute quickstart

Our 5-minute

quickstarts can help you

get started with Azure

Cosmos DB in the time

it takes to grab a cup of

coffee. They’re

organized by API and

programming language,

so you shouldn’t have

trouble finding one that

sparks your interest.

SQL API: .NET, .NET

Preview, Java, Node.js,

Python, Xamarin

MongoDB API: .NET,

Java, Node.js, Python,

Xamarin, Golang,

Gremlin API: .NET,

Gremlin console, Java,

Node.js, Python, PHP

Table API: .NET, Java,

Node.js, Python

Cassandra API: .NET,

Node.js, Java, Python

https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-dotnet-preview
https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-dotnet-preview
https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-java
https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-nodejs
https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-python
https://docs.microsoft.com/en-us/azure/cosmos-db/create-sql-api-xamarin-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-mongodb-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-mongodb-java
https://docs.microsoft.com/en-us/azure/cosmos-db/create-mongodb-nodejs
https://docs.microsoft.com/en-us/azure/cosmos-db/create-mongodb-flask
https://docs.microsoft.com/en-us/azure/cosmos-db/create-mongodb-xamarin
https://docs.microsoft.com/en-us/azure/cosmos-db/create-mongodb-golang
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-gremlin-console
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-java
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-nodejs
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-python
https://docs.microsoft.com/en-us/azure/cosmos-db/create-graph-php
https://docs.microsoft.com/en-us/azure/cosmos-db/create-table-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-table-java
https://docs.microsoft.com/en-us/azure/cosmos-db/create-table-nodejs
https://docs.microsoft.com/en-us/azure/cosmos-db/create-table-python
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-dotnet
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-nodejs
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-java
https://docs.microsoft.com/en-us/azure/cosmos-db/create-cassandra-python

34

enterprise-grade, fully managed, globally

distributed database system.

Choosing an API

At this point, you might be thinking, “Multiple

APIs give me options, but which do I choose?”

The answer depends on your data, and what

you want to do with it. Here are some general

guidelines:

• Document databases (supported by the

SQL and MongoDB APIs) store and

retrieve documents, which are typically

blocks of XML or JSON. Documents are

self-describing (containing a description of

the data type and a value for that

description) and employ a hierarchical,

tree-based structure, and they all don’t

have to be the same. At a high level, you

can think of a document database as a

key-value database where the value part

(the document) can be examined via a

query language.

• Graph databases (supported by the

Gremlin API) allow you to store entities

and the relationships between them.

Entities (aka nodes) can have properties,

just like the instance of an object in an

app. Relations with other nodes (aka

edges) can also have properties. With a

graph database, you can store data once

and then interpret the relationships within

it in different ways very quickly and

efficiently because the relationship

between nodes is persisted instead of

calculated at query time.

• Column family databases (supported by

the Cassandra API) store data in groups

of related information that that are often

accessed together—such as a customer

name, street address, and postal code. A

column family is a set of rows (each with a

row key) and an associated set of columns.

Various rows in the column family don’t

need to contain the same columns, and

columns can be added to one row without

having to add them to other rows.

• Key-value databases (supported via the

Table API) are relatively simple to use.

From an API perspective, the database

client can either Put, Get, or Delete values

by keys. The value is a blob; the database

doesn’t care what’s inside it. They’re good

for storing semi-structured data, providing

a flexible data schema where the

information in different rows can have

different structures.

With five APIs to choose from, odds are that you’ll have one optimized to the task at hand. For example,

key-value databases are great for doing lookups with known values such as state code or postal code,

or even for pulling user preferences for a signed-in user. Similarly, column databases are highly efficient

at projections—that is, obtaining a few properties from a document that has many. Graph databases

are helpful for visualizing both connected or networked data sets and hierarchical data relationships—

family trees and flights between airports are good examples.

Get started with a free Azure subscription

To get started with Azure Cosmos DB, you need a Microsoft Azure subscription. If you don’t have

one, you can sign up for a free Azure subscription in just a few minutes. You can also try Azure

Cosmos DB for free without an Azure subscription, free of any charges or commitments.

https://azure.microsoft.com/en-us/free/?v=18.23
https://azure.microsoft.com/en-us/try/cosmosdb/
https://azure.microsoft.com/en-us/try/cosmosdb/

35

Getting Started with

the SQL API

If you’ve chosen the SQL API, then you’ll likely

be modeling document data. And while

schema-free databases like Azure Cosmos DB

make it easy to change your data model, that

doesn’t mean you shouldn’t spend some time

thinking about it first. In doing so, you may

want to ask yourself some basic questions:

How will my data be stored? How will my app

retrieve and query that data, and is the app

read-heavy or write-heavy? Data modeling in

Azure Cosmos DB provides a good overview—

and some general rules-of-thumb—when it

comes to modeling document data.

Quickstarts

Our 5-minute quickstarts can help you get

started with the Azure Cosmos DB SQL API in

the time it takes to walk down the hall for a

cup of coffee. They’re organized by

programming language, so you shouldn’t

have trouble finding one that sparks your

interest.

Language

Scenario

.NET Create an Azure Cosmos DB SQL API account, document database, and container

using the Azure portal, and then build and deploy a web app built on the SQL .NET

API.

Java Create an Azure Cosmos DB SQL API account using the Azure portal, and then

create a Java app using the SQL Java SDK and add resources to your Azure Cosmos

DB account by using the Java application.

Node.js Create an Azure Cosmos DB SQL API account, document database, and container

using the Azure portal, and then build and run a console app built on the SQL

JavaScript SDK.

Python Create an Azure Cosmos DB SQL API account, document database, and container

using the Azure portal, and then build and run a console app built with the Python

SDK for SQL API.

Xamarin Create an Azure Cosmos DB SQL API account, document database, and container

using the Azure portal, and then build and deploy a web app built on the SQL .NET

API and Xamarin utilizing Xamarin.Forms and the MVVM architectural pattern.

Tutorials

When you’re ready to dive deeper into the

SQL API, the following tutorials are a great

place to start. The tutorials listed under

Creating an Azure Cosmos DB account assume

you’re starting from scratch and include

instructions for creating an account. All of the

other tutorials assume you already have an

account.

https://docs.microsoft.com/azure/cosmos-db/modeling-data
https://docs.microsoft.com/azure/cosmos-db/modeling-data
https://docs.microsoft.com/azure/cosmos-db/create-sql-api-dotnet
https://docs.microsoft.com/azure/cosmos-db/create-sql-api-java
https://docs.microsoft.com/azure/cosmos-db/create-sql-api-nodejs
https://docs.microsoft.com/azure/cosmos-db/create-sql-api-python
https://docs.microsoft.com/azure/cosmos-db/create-sql-api-xamarin-dotnet

36

Creating an Azure Cosmos DB account

The first thing you’ll need to do is to create

Azure Cosmos DB account and then a

container. After that, you can connect to your

new database and start using it. Any of the

following tutorials will walk you through these

basic concepts:

• Build a console app using .NET, Java,

Async Java, or Node.js

• Build a web app using .NET, Java, Node.js,

or Xamarin

Importing data

After you’ve familiarized yourself with Azure

Cosmos DB, you might want to try migrating

some of your own data into it. You can easily

do this using the Data Migration tool, an

open-source solution that imports data to

Azure Cosmos DB from a variety of sources.

Migrate your data to Azure Cosmos DB walks

you through installing the Data Migration

tool, importing data from different data

sources, and exporting from Azure Cosmos DB

to JSON. You can also import data

programmatically using the Azure Cosmos DB

bulk executor library.

Querying data

The Azure Cosmos DB SQL API supports

querying documents using SQL. Querying data

using the SQL API covers how to do this,

including a sample document and two sample

SQL queries.

Distributing data globally

After you have some data in your database,

you might want to distribute it to additional

Azure regions. Set up global distribution using

the SQL API shows you how to set up Azure

Cosmos DB global distribution using the

Azure portal, and then connect to a preferred

region using the SQL API.

How-to guides

The Azure Cosmos DB documentation

includes how-to guides for common SQL API-

related tasks, such as tuning query

performance, server-side programming, and

working with DateTime and geospatial data

types. There are dozens of non-API-specific

guides in the Azure Cosmos DB

documentation, too, with the first one starting

here and the rest listed below it in the left-

hand navigation pane.

Additional resources

Here are some additional resources that you

may find useful:

• Sample applications that show you how

to work with Azure Cosmos DB, including

performing CRUD operations and other

common operations. They’re organized by

language: .NET, Java, Async Java, Node.js,

Python, PowerShell, Azure CLI, and Azure

Resource Manager.

• Release notes and references for various

SDKs, libraries, resource providers, and so

on. There are too many to list in this

document, but you can find the first one

here, with rest listed below it in the left-

hand navigation pane.

• Hands-on experience working with Azure

Cosmos DB using the SQL API, JavaScript,

and the .NET Core SDK, which you can find

at the Azure Cosmos DB workshop on

GitHub.

• Videos on the Azure Cosmos DB YouTube

channel, which cover a broad range of

topics.

https://docs.microsoft.com/azure/cosmos-db/sql-api-get-started
https://docs.microsoft.com/azure/cosmos-db/sql-api-java-get-started
https://docs.microsoft.com/azure/cosmos-db/sql-api-async-java-get-started
https://docs.microsoft.com/azure/cosmos-db/sql-api-nodejs-get-started
https://docs.microsoft.com/azure/cosmos-db/sql-api-dotnet-application
https://docs.microsoft.com/azure/cosmos-db/sql-api-java-application
https://docs.microsoft.com/azure/cosmos-db/sql-api-nodejs-application
https://docs.microsoft.com/azure/cosmos-db/mobile-apps-with-xamarin
https://docs.microsoft.com/azure/cosmos-db/import-data
https://docs.microsoft.com/azure/cosmos-db/bulk-executor-overview
https://docs.microsoft.com/azure/cosmos-db/bulk-executor-overview
https://docs.microsoft.com/azure/cosmos-db/tutorial-query-sql-api
https://docs.microsoft.com/azure/cosmos-db/tutorial-query-sql-api
https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-sql-api
https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-sql-api
https://docs.microsoft.com/azure/cosmos-db/sql-api-query-metrics
https://docs.microsoft.com/azure/cosmos-db/sql-api-query-metrics
https://docs.microsoft.com/azure/cosmos-db/how-to-write-stored-procedures-triggers-udfs
https://docs.microsoft.com/azure/cosmos-db/working-with-dates
https://docs.microsoft.com/azure/cosmos-db/geospatial
https://docs.microsoft.com/azure/cosmos-db/how-to-manage-database-account
https://docs.microsoft.com/azure/cosmos-db/sql-api-dotnet-samples
https://docs.microsoft.com/azure/cosmos-db/sql-api-java-samples
https://docs.microsoft.com/azure/cosmos-db/sql-api-async-java-samples
https://docs.microsoft.com/azure/cosmos-db/sql-api-nodejs-samples
https://docs.microsoft.com/azure/cosmos-db/sql-api-python-samples
https://docs.microsoft.com/azure/cosmos-db/powershell-samples
https://docs.microsoft.com/azure/cosmos-db/cli-samples
https://docs.microsoft.com/azure/cosmos-db/resource-manager-samples
https://docs.microsoft.com/azure/cosmos-db/resource-manager-samples
https://docs.microsoft.com/azure/cosmos-db/sql-api-sdk-dotnet
https://cosmosdb.github.io/labs/
https://cosmosdb.github.io/labs/
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos

37

Getting Started with

the Cassandra API

Like all supported APIs in Azure Cosmos DB,

the Cassandra API is based on a native wire

protocol implementation—that is, an

implementation that does not use any

Cassandra source code. This lets you easily

migrate your Cassandra apps to Azure

Cosmos DB while preserving significant

portions of your application logic, enables you

to keep your apps portable, and lets you

continue to remain cloud vendor-agnostic.

The Azure Cosmos DB Cassandra API lets you

interact with data stored in Azure Cosmos DB

using the Cassandra Query Language (CQL),

Cassandra-based tools (like cqlsh), and

Cassandra client drivers that you’re already

familiar with. In many cases, you can switch

from using Apache Cassandra to using the

Azure Cosmos DB Cassandra API by merely

changing a connection string—and realize all

the benefits that using Azure Cosmos DB

provides.

You can communicate with the Azure Cosmos

DB Cassandra API through Cassandra Query

Language (CQL) v4 wire protocol compliant

open-source Cassandra client drivers. Our

online documentation provides more

information on supported CQL commands,

tools, limitations, and exceptions.

Quickstarts

Our 5-minute quickstarts can help you get

started with the Azure Cosmos DB MongoDB

API in the time it takes to walk down the hall

for a cup of coffee. They’re organized by

programming language, so you shouldn’t

have trouble finding one that sparks your

interest.

Language

Scenario

.NET Create an Azure Cosmos DB Cassandra API account, then build and review a

sample .NET app by cloning an example from GitHub.

Java Create an Azure Cosmos DB Cassandra API account, then build and review a

sample Java app by cloning an example from GitHub.

Node.js Create an Azure Cosmos DB Cassandra API account, then build and review a

sample Node.js app by cloning an example from GitHub.

Python Create an Azure Cosmos DB Cassandra API account, then build and review a

sample Python app by cloning an example from GitHub.

Tutorials

When you’re ready to dive deeper into the

Cassandra API, the following tutorials are a

great place to start. The first three tutorials

listed below build on each other, so make sure

to compete them in order. The tutorial on

migrating data is self-contained.

https://docs.microsoft.com/azure/cosmos-db/cassandra-introduction
https://docs.microsoft.com/azure/cosmos-db/cassandra-introduction
https://docs.microsoft.com/azure/cosmos-db/cassandra-introduction
https://github.com/apache/cassandra/blob/trunk/doc/native_protocol_v4.spec
https://cassandra.apache.org/doc/latest/getting_started/drivers.html?highlight=driver
https://docs.microsoft.com/azure/cosmos-db/cassandra-support
https://docs.microsoft.com/azure/cosmos-db/cassandra-support
https://docs.microsoft.com/azure/cosmos-db/create-cassandra-dotnet
https://docs.microsoft.com/azure/cosmos-db/create-cassandra-java
https://docs.microsoft.com/azure/cosmos-db/create-cassandra-nodejs
https://docs.microsoft.com/azure/cosmos-db/create-cassandra-python

38

Creating an Azure Cosmos DB account

and managing data

Creating a Cassandra API account in Azure

Cosmos DB describes how to create an Azure

Cosmos DB Cassandra API account, and then

use a Java sample project hosted on GitHub to

create a project and dependencies, add a

database and a table, and run the sample Java

application.

Loading data

Next, you might want to try importing some

of your own data. Loading sample data into a

Cassandra API table in Azure Cosmos DB

shows you how to load sample user data to a

table in a Cassandra API account in Azure

Cosmos DB by using a Java application.

Querying data

After you’ve imported your data, you’ll be

ready for our tutorial on querying data by

using the Cassandra API.

Migrating Data

If you have existing Cassandra workloads that

are running on-premises or in the cloud, and

you want to migrate them to Azure, then you

may want to peruse this tutorial on migrating

data to an Azure Cosmos DB Cassandra API

account. It covers your various options, which

include using the cqlsh COPY command or

using Apache Spark.

Cassandra and Spark

Apache Cassandra is often used together with

Apache Spark as components of a

comprehensive analytics stack; Cassandra

stores the data, and Spark handles the data

processing, including in-memory analytics.

You can do the same thing on Azure—by

using the Azure Cosmos DB Cassandra API as

a data store and either Azure Databricks or

Azure HDInsight for the analytics. Connecting

to the Azure Cosmos DB Cassandra API from

Spark provides guidance on how to do this—

including connectivity dependencies, Spark

connector throughout configuration

parameters, Data Definition Language (DDL)

operations, basic Data Manipulation Language

(DML) operations, and more.

How-to guides

The Azure Cosmos DB documentation

includes several how-to guides for common

Cassandra API-related tasks, such as using

Spring Data with Azure Cosmos DB,

connecting to the Azure Cosmos DB

Cassandra API from Spark, managing Azure

Cosmos DB Cassandra API resources using

Azure Resource Manager templates, and

Azure PowerShell samples for the Azure

Cosmos DB Cassandra API. There are dozens

of non-API-specific guides in the Azure

Cosmos DB documentation, too, with the first

one starting here and the rest listed below it

in the left-hand navigation pane.

There are also several videos on the Azure

Cosmos DB YouTube channel, which cover a

broad range of topics that you may find

useful.

https://docs.microsoft.com/azure/cosmos-db/create-cassandra-api-account-java
https://docs.microsoft.com/azure/cosmos-db/create-cassandra-api-account-java
https://docs.microsoft.com/azure/cosmos-db/cassandra-api-load-data
https://docs.microsoft.com/azure/cosmos-db/cassandra-api-load-data
https://docs.microsoft.com/azure/cosmos-db/cassandra-api-query-data
https://docs.microsoft.com/azure/cosmos-db/cassandra-api-query-data
https://docs.microsoft.com/azure/cosmos-db/cassandra-import-data
https://docs.microsoft.com/azure/cosmos-db/cassandra-import-data
https://docs.microsoft.com/azure/cosmos-db/cassandra-import-data
https://cassandra.apache.org/doc/latest/tools/cqlsh.html#cqlsh
https://docs.microsoft.com/azure/cosmos-db/cassandra-spark-generic
https://docs.microsoft.com/azure/cosmos-db/cassandra-spark-generic
https://docs.microsoft.com/azure/cosmos-db/cassandra-spark-generic
https://docs.microsoft.com/java/azure/spring-framework/configure-spring-data-apache-cassandra-with-cosmos-db?view=azure-java-stable&toc=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fcosmos-db%2FTOC.json&bc=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fbread%2Ftoc.json
https://docs.microsoft.com/java/azure/spring-framework/configure-spring-data-apache-cassandra-with-cosmos-db?view=azure-java-stable&toc=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fcosmos-db%2FTOC.json&bc=https%3A%2F%2Fdocs.microsoft.com%2Fen-us%2Fazure%2Fbread%2Ftoc.json
https://docs.microsoft.com/azure/cosmos-db/cassandra-spark-generic
https://docs.microsoft.com/azure/cosmos-db/cassandra-spark-generic
https://docs.microsoft.com/azure/cosmos-db/manage-cassandra-with-resource-manager
https://docs.microsoft.com/azure/cosmos-db/manage-cassandra-with-resource-manager
https://docs.microsoft.com/azure/cosmos-db/manage-cassandra-with-resource-manager
https://docs.microsoft.com/azure/cosmos-db/powershell-samples-cassandra
https://docs.microsoft.com/azure/cosmos-db/powershell-samples-cassandra
https://docs.microsoft.com/azure/cosmos-db/how-to-manage-database-account
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos

39

Getting Started with

the Azure Cosmos

DB for MongoDB API

Like all supported APIs in Azure Cosmos DB,

the Azure Cosmos DB for MongoDB API is

based on a native wire protocol

implementation—that is, an implementation

that does not use any MongoDB source code.

This lets you easily migrate your MongoDB

apps to Azure Cosmos DB while preserving

significant portions of your application logic,

enables you to keep your apps portable, and

lets you continue to remain cloud vendor

agnostic.

Because supported MongoDB wire protocol

versions will change over time, it’s best to

refer to our online documentation for

information on wire protocol compatibility

and wire protocol support.

Quickstarts

Our 5-minute quickstarts can help you get

started with the Azure Cosmos DB MongoDB

API in the time it takes to walk down the hall

for a cup of coffee. They’re organized by

programming language, so you shouldn’t

have trouble finding one that sparks your

interest.

Language

Scenario

.NET Create an the Azure Cosmos DB for MongoDB API account, a document database,

and a collection using the Azure portal, and then build and deploy a web app

based on the MongoDB .NET driver.

Java Create an Azure Cosmos DB for MongoDB API account, a document database, and

a collection using the Azure portal, and then build and deploy a web app based on

the MongoDB Java driver.

Node.js Connect an existing MongoDB app written in Node.js to an Azure Cosmos DB for

MongoDB API account. When you’re done, you will have a MEAN application

(MongoDB, Express, Angular, and Node.js) running on Azure Cosmos DB.

Python Build a simple Flask app by using the Azure Cosmos DB Emulator and the Azure

Cosmos DB for MongoDB API.

Xamarin Create an Azure Cosmos DB for MongoDB API account, a document database, and

a collection using the Azure portal, and then build a Xamarin.Forms app by using

the MongoDB .NET driver.

Golang Create an Azure Cosmos DB for MongoDB API account and then connect to it

using an existing MongoDB app written in Golang.

https://docs.microsoft.com/azure/cosmos-db/mongodb-introduction
https://docs.microsoft.com/azure/cosmos-db/mongodb-feature-support
https://docs.microsoft.com/azure/cosmos-db/create-mongodb-dotnet
https://docs.microsoft.com/azure/cosmos-db/create-mongodb-java
https://docs.microsoft.com/azure/cosmos-db/create-mongodb-nodejs
https://docs.microsoft.com/azure/cosmos-db/create-mongodb-flask
https://docs.microsoft.com/azure/cosmos-db/create-mongodb-xamarin
https://docs.microsoft.com/azure/cosmos-db/create-mongodb-golang

40

Tutorials

When you’re ready to dive deeper into the

Azure Cosmos DB for MongoDB API, the

following tutorials are a great place to start.

The tutorials listed under Creating an Azure

Cosmos DB account assume you’re starting

from scratch and include instructions for

creating an account. All of the other tutorials

assume you already have an account.

Creating an Azure Cosmos DB account

and managing data

The following tutorials walk you through

creating an Azure Cosmos DB account and

creating a collection, and then they show you

how to connect to your new database and

start using it.

Tutorial

Scenario

Node.js console app Use a Node.js console app to connect to an Azure Cosmos DB for

MongoDB API database

Create a MongoDB app

with Angular

Create a MongoDB app with Express, Angular, and Node.js (the MEAN

stack), and then connect it to Azure Cosmos DB. You’ll create a Node.js

Express app with the Angular CLI; build the UI with Angular; create an

Azure Cosmos DB account using the Azure CLI; connect to Azure

Cosmos DB using Mongoose; and add Post, Put, and Delete functions.

Create a MongoDB app

with React

Similar to the above but uses React instead of Angular—and is a video

tutorial.

Migrating data

After you’ve familiarized yourself with Azure

Cosmos DB, you might want to try importing

some of your own data. To migrate data into

or out of Azure Cosmos DB for MongoDB API

collections, you need to use Mongoimport.exe

or Mongorestore.exe.

Querying data

Querying data using the Azure Cosmos DB for

MongoDB API provides several example

queries that show you how to query your data

in Azure Cosmos DB using MongoDB shell.

Distributing data globally

After you have some data in your database,

you might want to distribute it to additional

Azure regions. Set up global distribution using

the Azure Cosmos DB for MongoDB API

shows you how to set up Azure Cosmos DB

global distribution using the Azure portal,

verify your regional setup, and then connect

to a preferred region using the Azure Cosmos

DB for MongoDB API ,

How-to guides

The Azure Cosmos DB documentation

includes several how-to guides for common

Azure Cosmos DB for MongoDB API-related

tasks, such as getting the connection string,

connecting using Studio 3T, distributing reads

globally, using time-to-live (TTL) functionality

to automatically expire data, and managing

data indexing. There are dozens of non-API-

https://docs.microsoft.com/azure/cosmos-db/mongodb-samples
https://docs.microsoft.com/azure/cosmos-db/tutorial-develop-mongodb-nodejs
https://docs.microsoft.com/azure/cosmos-db/tutorial-develop-mongodb-nodejs
https://docs.microsoft.com/azure/cosmos-db/tutorial-develop-mongodb-react
https://docs.microsoft.com/azure/cosmos-db/tutorial-develop-mongodb-react
https://docs.microsoft.com/azure/cosmos-db/mongodb-migrate
https://docs.microsoft.com/azure/cosmos-db/mongodb-migrate
https://docs.microsoft.com/azure/cosmos-db/tutorial-query-mongodb
https://docs.microsoft.com/azure/cosmos-db/tutorial-query-mongodb
https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-mongodb
https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-mongodb
https://docs.microsoft.com/azure/cosmos-db/connect-mongodb-account
https://docs.microsoft.com/azure/cosmos-db/mongodb-mongochef
https://docs.microsoft.com/azure/cosmos-db/mongodb-readpreference
https://docs.microsoft.com/azure/cosmos-db/mongodb-readpreference
https://docs.microsoft.com/azure/cosmos-db/mongodb-time-to-live
https://docs.microsoft.com/azure/cosmos-db/mongodb-time-to-live
https://docs.microsoft.com/azure/cosmos-db/mongodb-indexing
https://docs.microsoft.com/azure/cosmos-db/mongodb-indexing

41

specific guides in the Azure Cosmos DB

documentation, too, with the first one starting

here and the rest listed below it in the left-

hand navigation pane.

There are also several videos on the Azure

Cosmos DB YouTube channel, which cover a

broad range of topics that you may find

useful.

https://docs.microsoft.com/azure/cosmos-db/how-to-manage-database-account
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos

42

Getting Started with

the Gremlin API

Like all supported APIs in Azure Cosmos DB,

the Gremlin API is based on a native wire

protocol implementation—that is, an

implementation that does not use any Gremlin

source code. This lets you easily migrate your

Gremlin apps to Azure Cosmos DB while

preserving significant portions of your

application logic, enables you to keep your

apps portable, and lets you continue to

remain cloud vendor-agnostic.

Azure Cosmos DB supports Apache

TinkerPop's Gremlin graph traversal

language, which you can use to create graph

entities (vertices and edges), modify

properties within those entities, perform

queries and traversals, and delete entities. If

you’re not familiar with graph databases or

Gremlin, the following resources may be

helpful:

• Introduction to the Azure Cosmos DB

Gremlin API provides an overview of graph

databases and explains how you can use

them to store massive graphs with billions

of vertices and edges.

• Azure Cosmos DB Gremlin graph support

provides a basic introduction to Gremlin,

including examples, features, GraphSON

(the Gremlin wire format), and the Gremlin

steps supported by Azure Cosmos DB.

Quickstarts

Our 5-minute quickstarts can help you get

started with the Azure Cosmos DB for

MongoDB API in the time it takes to walk

down the hall for a cup of coffee. They’re

organized by programming language, so you

shouldn’t have trouble finding one that sparks

your interest.

Language

Scenario

Gremlin

console

Create an Azure Cosmos DB Gremlin API account, database, and graph (container)

using the Azure portal, and then use the Gremlin Console from Apache TinkerPop

to work with Gremlin API data

.NET Create an Azure Cosmos DB Gremlin API account, database, and graph (container)

using the Azure portal, and then build and run a console app built using the open-

source driver Gremlin.Net.

Java Create a simple graph database using the Azure portal, and then create a Java

console app using a Gremlin API database using the OSS Apache TinkerPop driver.

Node.js Create an Azure Cosmos DB Gremlin API account, database, and graph using the

Azure portal, and then use the open-source Gremlin Node.js driver to build and

run a console app.

Python Create an Azure Cosmos DB Gremlin API account by using the Azure portal, and

then use Python to build a console app by cloning an example from GitHub.

PHP Create an Azure Cosmos DB Gremlin API account by using the Azure portal, and

then use PHP to build a console app by cloning an example from GitHub.

https://tinkerpop.apache.org/
https://tinkerpop.apache.org/
https://docs.microsoft.com/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/azure/cosmos-db/graph-introduction
https://docs.microsoft.com/azure/cosmos-db/gremlin-support
https://docs.microsoft.com/azure/cosmos-db/create-graph-gremlin-console
https://docs.microsoft.com/azure/cosmos-db/create-graph-gremlin-console
https://docs.microsoft.com/azure/cosmos-db/create-graph-dotnet
https://docs.microsoft.com/azure/cosmos-db/create-graph-java
https://docs.microsoft.com/azure/cosmos-db/create-graph-nodejs
https://docs.microsoft.com/azure/cosmos-db/create-graph-python
https://docs.microsoft.com/azure/cosmos-db/create-graph-php

43

Tutorials

When you’re ready to dive deeper into the

Gremlin API, the following tutorials are a great

place to start:

Migrating data

You can import data programmatically using

the bulk executor library for the Gremlin API on

GitHub. Our how-to guide for using the bulk

executor library with the Gremlin API provides

instructions for using it to import and update

graph objects into an Azure Cosmos DB

Gremlin API container.

Querying data

Querying data using the Gremlin API provides

sample documents and queries to get you

started with Gremlin queries.

How-to guides

The Azure Cosmos DB documentation includes

several how-to guides for common Gremlin

API-related tasks, such as using a partitioned

graph in Azure Cosmos DB, optimizing Gremlin

queries, and Azure PowerShell samples for the

Azure Cosmos DB Gremlin API. There are

dozens of non-API-specific guides in the Azure

Cosmos DB documentation, too, with the first

one starting here and the rest listed below it in

the left-hand navigation pane.

There are also several videos on the Azure

Cosmos DB YouTube channel, which cover a

broad range of topics that you may find useful.

https://github.com/Azure-Samples/azure-cosmosdb-graph-bulkexecutor-dotnet-getting-started
https://docs.microsoft.com/azure/cosmos-db/bulk-executor-graph-dotnet
https://docs.microsoft.com/azure/cosmos-db/bulk-executor-graph-dotnet
https://docs.microsoft.com/azure/cosmos-db/tutorial-query-graph
https://docs.microsoft.com/azure/cosmos-db/graph-partitioning
https://docs.microsoft.com/azure/cosmos-db/graph-partitioning
https://docs.microsoft.com/azure/cosmos-db/graph-execution-profile?view=azure-java-stable
https://docs.microsoft.com/azure/cosmos-db/graph-execution-profile?view=azure-java-stable
https://docs.microsoft.com/azure/cosmos-db/powershell-samples-gremlin?view=azure-java-stable
https://docs.microsoft.com/azure/cosmos-db/powershell-samples-gremlin?view=azure-java-stable
https://docs.microsoft.com/azure/cosmos-db/how-to-manage-database-account
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos

44

Getting Started with

the Table API

The Azure Cosmos DB Table API supports

applications that are written for Azure Table

storage, augmenting them with premium

capabilities such as turnkey global

distribution, dedicated throughput worldwide,

single-digit millisecond latencies at the 99th

percentile, guaranteed high availability, and

automatic secondary indexing. Our

introduction to the Table API takes a closer

look at the benefits of moving from Azure

Table storage to the Azure Cosmos DB Table

API.

Quickstarts

Our 5-minute quickstarts can help you get

started with the Azure Cosmos DB for

MongoDB API in the time it takes to walk

down the hall for a cup of coffee. They’re

organized by programming language, so you

shouldn’t have trouble finding one that sparks

your interest.

Language

Scenario

.NET Use the Azure portal to create an Azure Cosmos DB Table API account, use Data

Explorer to create tables and entities, and then build a .NET app that connects to

the Table API by cloning an example from GitHub.

Java Use the Azure portal to create an Azure Cosmos DB Table API account, use Data

Explorer to create tables and entities, and then build a Java app that connects to

the Table API by cloning an example from GitHub.

Node.js Use the Azure portal to create an Azure Cosmos DB Table API account, use Data

Explorer to create tables and entities, and then build a Node.js app that connects

to the Table API by cloning an example from GitHub.

Python Use the Azure portal to create an Azure Cosmos DB Table API account, use Data

Explorer to create tables and entities, and then build a Python app that connects to

the Table API by cloning an example from GitHub.

Tutorials

When you’re ready to dive deeper into the

Table API, the following tutorials are a great

place to start. The tutorials listed under Step 1:

Creating an Azure Cosmos DB account assume

you’re starting from scratch and include

instructions for creating an account. All of the

other tutorials assume you already have an

account.

Step 1: Creating an Azure Cosmos DB

account and managing data

Get started with Azure Cosmos DB Table API

and Azure Table storage walks you through

creating an Azure Cosmos DB account and

creating a table, and then shows you how to

connect to your new database and start using

it. You learn how to enable functionality in the

app.config file, create a table using the Table

API, add an entity to a table, insert a batch of

entities, retrieve a single entity, query entities

https://docs.microsoft.com/azure/cosmos-db/table-introduction
https://docs.microsoft.com/azure/cosmos-db/create-table-dotnet
https://docs.microsoft.com/azure/cosmos-db/create-table-java
https://docs.microsoft.com/azure/cosmos-db/create-table-nodejs
https://docs.microsoft.com/azure/cosmos-db/create-table-python
https://docs.microsoft.com/azure/cosmos-db/tutorial-develop-table-dotnet
https://docs.microsoft.com/azure/cosmos-db/tutorial-develop-table-dotnet

45

using automatic secondary indexes, replace an

entity, delete an entity, and delete a table.

Step 2: Importing data

Migrate your data to an Azure Cosmos DB

Table API account walks you through

importing data for use with the Table API. If

your data is in Azure Table storage, you can

use either the Data Migration Tool or AzCopy

to import it. If your data is in an Azure Cosmos

DB Table API (preview) account, you’ll need to

use the Data Migration tool to import it. Both

methods are addressed in the tutorial.

Step 3: Querying data

The Azure Cosmos DB Table API supports

OData and LINQ queries against key/value

(table) data. Both methods are covered in our

tutorial on querying Azure Cosmos DB by

using the Table API.

Step 4: Distributing data globally

After you have some data in your database,

you might want to distribute it to additional

Azure regions. Set up global distribution using

the Table API walks you through replicating

data to additional Azure regions by using the

Azure portal, and then connecting to a

preferred region by using the Table API.

How-to guides

The Azure Cosmos DB documentation

includes several how-to guides for common

SQL API-related tasks, such as building apps

with the Table API, guidance on Table storage

design, and Azure PowerShell samples for the

Azure Cosmos DB Table API. There are dozens

of non-API-specific guides in the Azure

Cosmos DB documentation, too, with the first

one starting here and the rest listed below it

in the left-hand navigation pane.

There are also several videos on the Azure

Cosmos DB YouTube channel, which cover a

broad range of topics that you may find

useful.

https://docs.microsoft.com/azure/cosmos-db/table-import
https://docs.microsoft.com/azure/cosmos-db/table-import
https://docs.microsoft.com/azure/cosmos-db/tutorial-query-table
https://docs.microsoft.com/azure/cosmos-db/tutorial-query-table
https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-table
https://docs.microsoft.com/azure/cosmos-db/tutorial-global-distribution-table
https://docs.microsoft.com/azure/cosmos-db/table-support
https://docs.microsoft.com/azure/cosmos-db/table-support
https://docs.microsoft.com/azure/cosmos-db/table-storage-design-guide
https://docs.microsoft.com/azure/cosmos-db/table-storage-design-guide
https://docs.microsoft.com/azure/cosmos-db/powershell-samples-table
https://docs.microsoft.com/azure/cosmos-db/powershell-samples-table
https://docs.microsoft.com/azure/cosmos-db/how-to-manage-database-account
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos
https://www.youtube.com/channel/UC9OJ32CzooNJNoP6_iIfxRw/videos

46

Conclusion
If you’re looking for a NoSQL database, you

owe it to yourself to consider Azure Cosmos

DB. No other multi-model distributed

database offers turnkey global distribution;

unlimited elastic scalability of storage and

throughput; guaranteed single-digit-

millisecond latency; five well-defined

consistency levels; and comprehensive SLAs

for availability, latency, throughput, and

consistency. Regardless of what your next app

is built to do, if it needs to do it with low

latency at a global scale, Azure Cosmos DB

can help you get there.

Sign up for a free Azure

account and get started with

Azure Cosmos DB today – or

try Azure Cosmos DB for free

without an Azure

subscription.

https://azure.microsoft.com/free/
https://azure.microsoft.com/free/
https://azure.microsoft.com/try/cosmosdb/
https://azure.microsoft.com/try/cosmosdb/
https://azure.microsoft.com/try/cosmosdb/

	NoSQL: A quick primer
	NoSQL defined
	Common NoSQL data models
	Horizontal scalability
	Replication

	When to consider NoSQL
	How to choose a NoSQL database
	Programming models and APIs
	Consistency vs. latency
	On-premises vs. cloud—and which cloud?

	Azure Cosmos DB: A globally distributed, multi-model database
	Key features and capabilities
	Common use cases

	Core concepts and considerations
	Azure Cosmos DB accounts
	Resource model: Databases, containers, and items
	Partitioning and horizontal scalability
	Choosing a good partition key
	Request units and provisioned throughout
	Understanding throughput requirements
	Provisioning throughput on containers and databases

	Global distribution
	Multi-master replication
	How provisioned throughout is distributed across multiple regions

	Consistency
	Automatic indexing

	Architectural considerations
	Change feed
	Building serverless apps with Azure Cosmos DB and Azure Functions
	Server-side programming
	Apache Spark to Azure Cosmos DB Connector
	Built-in operational analytics with Apache Spark (in preview)

	Operational considerations
	Cost optimization with Azure Cosmos DB
	Security
	Online backup and restore
	Compliance

	Building an app with Azure Cosmos DB
	Choosing the right API
	One database, multiple APIs
	Choosing an API

	Getting Started with the SQL API
	Quickstarts
	Tutorials
	Creating an Azure Cosmos DB account
	Importing data
	Querying data
	Distributing data globally

	How-to guides
	Additional resources

	Getting Started with the Cassandra API
	Quickstarts
	Tutorials
	Creating an Azure Cosmos DB account and managing data
	Loading data
	Querying data
	Migrating Data

	Cassandra and Spark
	How-to guides

	Getting Started with the Azure Cosmos DB for MongoDB API
	Quickstarts
	Tutorials
	Creating an Azure Cosmos DB account and managing data
	Migrating data
	Querying data
	Distributing data globally

	How-to guides

	Getting Started with the Gremlin API
	Quickstarts
	Tutorials
	Migrating data
	Querying data

	How-to guides

	Getting Started with the Table API
	Quickstarts
	Tutorials
	Step 1: Creating an Azure Cosmos DB account and managing data
	Step 2: Importing data
	Step 3: Querying data
	Step 4: Distributing data globally

	How-to guides

	Conclusion

